
High-quality modeling in UML © InferData Corporation 2001-2204 1

High-quality modeling in UML

Richard Mitchell, Petter Graff, and Vladimir Bacvanski

InferData Corporation, USA

Revised Jan 2004

www.inferdata.com

richard@inferdata.com



High-quality modeling in UML © InferData Corporation 2001-2204 2

Short Overview

This white paper presents an approach to using UML to create and maintain high quality models.
The high level of quality in the models comes from:

• extensive cross-checking between different models (which requires us to pay attention to the
possible meanings you can give to certain models)

• maintaining continuity of structure and behavior (from models of the problem domain, through
black-box models of the system, to design models of software)

• careful testing of models (example-level models are used to test general-level models).

The white paper is intended for developers and managers who use, or are considering using, the
Unified Modeling Language in their development process. The paper will assume an elementary
knowledge of object-oriented concepts and their use in OO modeling.



High-quality modeling in UML © InferData Corporation 2001-2204 3

Overview

UML is a widely-accepted lan-
guage for building object-oriented
models. Development processes
have been built around it, and tools
have been built to support it.

This white paper presents key ele-
ments from a layer we think of as
coming between the modeling lan-
guage and your favorite develop-
ment process. The layer clarifies
and constrains the use of UML,
with the highly-focused aim of
enhancing the quality of models
built and maintained during the life
of a software product. 

We think of the layer as offering an
approach to system development.
The approach can be used with dif-
ferent processes and different tools
(and even a different modeling lan-
guage). 

The white paper addresses:

Problem domain modeling. Modeling the business events a system must respond to, and the
types of objects affected by these events.

Continuity. Carrying the structure and behavior of a problem domain into system and design
models.

Cross-checking. Ensuring that every model can be cross-checked against other models.

Model testing. Using example-level models to test general-level models of structure and behavior.

Architecture. Making the architectural view of a system provide placeholders for different model-
ing viewpoints.

Process. Distinguishing between development activities and phases of development.

Vocabulary. Using models of object types to provide a vocabulary for behavioral models.

The approach presented here does not cover all aspects of system development. For example, we
don’t address support for project-management through time-boxing of development activities, or
support for mathematical precision through the use of UML’s Object Constraint Language, OCL.
Instead, our particular selection focuses on high-quality modeling, presenting what we have found
in practice adds considerable value to many kinds of projects with only a small investment in
learning. 

• maintain continuity
• cross-check models
• test models

A development PROCESS is 
really two processes: a tech-
nical process and a manage-
ment process

Our APPROACH constrains 
the process and the modeling 
language to enable cross-
checks and tests

The de facto modeling 
LANGUAGE is UML

TOOLS support the use of 
the language within the pro-
cess, and, ideally, help apply 
cross-checks and tests



High-quality modeling in UML © InferData Corporation 2001-2204 4

The approach owes much to pioneering work by the designers of Fusion (Coleman et al 1994) and
Syntropy (Cook and Daniels 1994), and it has points in common with Catalysis (D’Souza and
Wills 1999).

The InferData Approach

The InferData approach has these key characteristics:

• UML-based
• incremental and iterative
• architecture-supported
• behavior-driven
• two-level
• cross-checked
• continuity-focused
• lightweight
• sufficiently precise.

These characteristics are briefly outlined in the remainder of this section. Later sections explore
the characteristics and their underlying principles more fully.

UML-Based
Visual modeling uses UML diagrams, such as use case diagrams, sequence diagrams, state mod-
els, and class diagrams (which are used to document types as well as classes). We also exploit
UML’s placeholders for text attached to diagram elements (such as the placeholders for precondi-
tions and postconditions).

Incremental and Iterative
Nothing comes out right first time, so model-building has to be an iterative process. Also, a long
modeling phase followed by a long implementation phase is generally disastrous, so models and
code need to be developed incrementally.

Architecture-Supported
All modeling and implementation take place within the context of architectural models. These
include models based on subject domains, and models based on technical domains.

Domains divide the overall problem into manageable parts, which can be worked on by separate
teams. For example, a system concerned with financial instruments could have subject domains
concerned with instrument reference data and pricing, where the pricing domain depends upon the
reference data. And the system could have technical domains such as the core of the system versus
its user interaction and persistence domains. One team could work on, for instance, the user inter-
action technical domain within the pricing subject domain.

Behavior-Driven
The state of a world or a system is modeled using objects, their attributes, and the links between
them. Behavior is concerned with changes to this state. Our models are concerned with two kinds



High-quality modeling in UML © InferData Corporation 2001-2204 5

of things: the objects in our models (which we think of as the “things that are”) and the changes
they experience (which we think of as the “things that happen”).

Changes in a business domain are modeled as events. Changes in the externally-visible state of a
system are modeled as use cases. Changes inside a system are the result of objects sending mes-
sages to other objects.

When modeling a system, use cases are described first as essential use cases, capturing the
required functionality of the system. Later, concrete use cases capture the designer’s choice of
interaction sequences that present this functionality to the system’s users.

Two-Level
Models are built at both the general level and the example level, supporting how we think (have
you ever said “could you give me an example of that?”). Key general-level models are supported
by examples. For instance, type models are supported by example snapshots, and behavior models
are supported by example scenarios. 

There are several advantages to working with examples. It can be easier to begin modeling with
examples, and generalize later. A general model can be explained to others using a few examples.
A general model can be tested by checking that it supports carefully-chosen examples.

Example-level models can use actual (or plausible) individual examples (e.g., Kim rents copy 12
of the video version of Titanic from LowPrice at 8.30 p.m. on June 4th, 2001, paying $4.50 in
cash) or prototypical examples (e.g., member m borrows copy c of title t from video store s at
timepoint p paying an amount a).

Cross-Checked
In principle, a project produces a single model. In practice, this single underlying model is never
seen, because it is too big to present. Instead, modelers construct a number of individual models,
each of which is a view, or projection, of the underlying single model. Even a modest-sized project
produces many individual models: type models of different aspects of the system, supporting snap-
shots, specifications of essential use cases, state models of key types, and so on. It is important to
ensure that all the different models are talking about the same underlying model. This can be
achieved through an extensive set of cross checks. To make cross-checking workable, the mean-
ings of UML diagrams must be constrained. 

Cross-checking has several important benefits:

• during early model construction, inconsistencies revealed by cross-checks raise important anal-
ysis questions

• later, cross-checks that do not reveal inconsistencies show us that the models are maturing
• during model evaluation, models can be tested for consistency and completeness.

Continuity-Focused
The roots of object-orientation are in simulation. Whenever a modeler is faced with a question of
the form “should we model it this way or that way?” the answer is sought in the problem domain,
so that models exhibit continuity with the domain. Relevant properties of the domain are retained
in system specifications and internal designs. As a result, changes that appear small in the business
domain are more likely to result in small changes to the system. 



High-quality modeling in UML © InferData Corporation 2001-2204 6

Lightweight
Rather than present a heavyweight process with many ordered steps, each with milestones and
deliverables, we explain the content of different models, and how they should be cross-checked.
Developers are encouraged to switch modeling activities frequently, because this aids thinking.
For example, if you get stuck on one aspect of a type model, try building a snapshot, or exploring
what events change the state of the types of objects in question. There is advice on what to address
when, but there are no absolute constraints. For example, a high-risk area could be designed before
other areas are analyzed.

Sufficiently Precise
Different projects, and different phases within one project, need different levels of precision in the
various descriptions. Descriptions of behavior, for example, can be written:

• informally
• semi-formally, using a vocabulary defined in a type model
• fully formally, using the UML’s Object Constraint Language, and supported by a type model.

We strongly advocate reaching the semi-formal level, supporting all descriptions of behavior with
a type model—we shall see examples later. Many projects do not need a fully formal approach.

Explaining the Approach

This section looks at different aspects of the approach in more detail, using examples presented in
the white paper.

Continuity

Some models lack continuity with the situation in the
world being modeled. The model does not corre-
spond well with the situation. This lack of continuity
might not prevent us from building the system in the
first place. The danger is that it will prevent us from
adapting the system to new requirements. Here is an
excellent example, retold with permission from
(Jackson 1983). 

Imagine we are software developers, and we have a
client who runs a boating lake, where members of
the public can rent a boat for a session. Sessions vary
in length. We have been contracted to build a system
that can report each day’s average session length.
Our analysis of the problem reveals that the key out-
put is defined thus:

Analysis model:

average session length = sum(finishTimei - startTimei) / n



High-quality modeling in UML © InferData Corporation 2001-2204 7

The start and finish times of sessions are indexed by i, which can take values in the range 1 to n,
where n is the number of sessions in the day. By subtracting the start time of the ith session from
its finish time, we obtain the length of the ith session (we can choose a suitable way of recording
start and finish times for a session so that subtraction yields the correct result). To calculate the
average session length, we sum the lengths of all the sessions, and divide by how many sessions
there were.

Let’s begin designing the internal workings of the system. Consider the following tabular repre-
sentation of start and finish times, using simplified values for these times:

Examination of the table reveals that we can find out the sum of the lengths of all sessions in two
different ways:

• either by subtracting each start time from its corresponding finish time, and adding up the
resulting column of session lengths (as in the analysis model)

• or by keeping running totals of the start times and the finish times, and doing a single subtrac-
tion of these two running totals.

Therefore, we can base our design on the following revised model of the average length of a ses-
sion.

Design model:

average session length = ( sum(finishTimei) - sum(startTimei) ) / n

Implementing the earlier analysis model directly would entail pairing up the finish time of every
session with its start time, without knowing in advance how many unfinished sessions there would
be at any one time. The design model is considerably simpler to implement: just keep two running
totals and a counter, and perform the calculation of the average at the end of the business day. We
implement this design.

Our client is delighted with the system, and returns after a week asking for a small change. As well
as providing the average session length, the system should output the length of the longest session.
We quickly notice that this would necessitate a complete re-design, and we have to persuade the
client that this will be an expensive modification. The client is not happy, but, optimistically,
returns to ask if we can do something simpler: make the system provide the shortest session
instead. This, too, would necessitate a complete redesign, and, by now, we’ve probably lost a cli-
ent. 

What went wrong? The key change we made when moving from the analysis model to the design
model was to remove an explicit representation of a session. Yet sessions are what the client’s
world is about. It is not surprising, then, that a change that seems small to the client, in her world,
might prove impossible to make in our model of her world, since we have not modeled her world
adequately.

Session number
Start 
time

Finish 
time

Session 
length

1 10 30 20

2 20 50 30

3 30 50 20

COLUMN TOTALS 60 130 70



High-quality modeling in UML © InferData Corporation 2001-2204 8

So, we shall be careful to understand the world into which we are putting software. Then we shall
strive to retain this understanding in all our models, right down into the internal design of the sys-
tem. If our client’s world is about sessions, our running system will certainly contain objects of
type session.

This example has focused on a structural concept—the existence of individual sessions. The same
principle applies to behavioral concepts. Behavior is all about how objects change over time. If
certain changes can happen to objects in a model of a problem domain, these changes must be sup-
ported in software. 

Architectures

We can organize the descriptions of a system into what we
shall call technical domains. This picture shows three such
domains, and it provides a logical architecture that is suit-
able for small programs that do not have a persistency
requirement.

The user interacts with the program through widgets in a
graphical user interface (GUI). The essential functionality
of the program is captured in its core. The interaction
domain’s responsibility is to manage the interaction
between the GUI and the core, translating the user’s
manipulations of GUI elements into requests for services from the core, and continually updating
what the user can see on the screen in response to changes in the core.

In practice, many more technical domains are needed, to allow for a core system that can also have
persistent objects in a database, be connected to physical devices, communicate with other sys-
tems, and so on.

Development can also be about different subject areas,
or subject domains, within an overall system. For
example, if we were modeling a video store system, we
might consider four subject areas, shown here using
UML’s package notation.

The rentals side of the business can be thought about
largely separately from the problems of handling the
membership of the store, and so rentals and member-
ship can be two separate subject areas, or subject
domains. Similarly, we can work on the sales and
inventory management largely as separate problems.

Continuity
• Discover the key problem domain concepts
- Look for structural concepts and behavioral concepts

• Make sure these concepts are modeled in software, from systems analysis models, through
design, and into code

core

interaction

GUI

Video Store
System

MembershipRentals

Sales Inventory



High-quality modeling in UML © InferData Corporation 2001-2204 9

The four subject areas are not entirely independent, however. The diagram shows the key depen-
dencies as dashed arrows. For instance, the rentals subject area depends upon membership
because, for example, you cannot rent videos to non-members. Membership depends upon rentals
because, for example, a member can be in poor standing if he or she has too many overdue rentals
or outstanding fines.

Subject domains and technical domains are different. One particular developer, at one moment in
time, might be working on the GUI aspects of the membership domain, or working on the core of
the rentals domain, and so on.

Model of Time

An approach to building object-oriented models needs
an underlying model of time. This one is described in
(Jackson 1995). There is a timeline, with time increas-
ing from left to right. Each vertical line represents a
moment in time at which the state of the world changes. 

In between the vertical lines, the world remains in some state for an interval of time. We model the
state of the world using objects, and the changes of state using events. (Of course, this model of
time, and hence the use of events for modeling, are not appropriate for all aspects of all systems,
such as aspects of process control systems.)

Events are atomic. Changes to the state of the world can occur only in events. No changes occur in
the intervals of time between the events.

When we are modeling the core of a system, the events that interest us are those events happening
in the world that are to affect the system. For example, suppose that we are building a system for a
video store called LowPrice. Then we must model the core so that the event “Kim rents copy 12 of
the video version of Titanic from LowPrice at 8.30 p.m. on June 4th, 2001, paying $4.50 in cash”
is an event that changes the state of the system. But the event “Kim borrows $5 from Heidi in order
to go to LowPrice to rent Titanic” is one we might choose to ignore.

We shall, of course, classify the objects and events into types. So we shall model with object types
such as Member and Copy, and event types such as rent and return.

Here are two quotes suggesting that those who do not model events directly still recognize their
importance.

“A good source for identifying use cases is external events. Think about all the events from the
outside world to which you want to react. A given event may cause a system reaction that does not
involve users, or it may cause a reaction primarily from the users. Identifying the events that you
need to react to will help you identifying the use cases.” (Fowler 1997, page 48, paragraph 4).

Architecture
• You’ll need several organizing principles for architectural models
• Two examples: divide a system into technical domains and into subject domains.

time

events



High-quality modeling in UML © InferData Corporation 2001-2204 10

“The actor may also inform the system about certain external events or the other way round…”
(Jacobson, Booch and Rumbaugh 1999, page 148).

In the InferData approach, we do more than identify the external events, we capture the changes in
the world that occur in these events, and specify them carefully. Then we build models of systems
so that changes inside systems show continuity with allowed changes in the world.

Development Activities

A developer using UML might, at some moment, be constructing a class diagram. 

What might the class diagram describe? It might describe the different types of object in the world
surrounding the software. Or it might describe the types of object needed in a definition of the
required functionality of a system. Or it might describe a design of how to deliver some of that
functionality. 

When might the diagram be produced? It might be produced early in a project, when most atten-
tion is focused on understanding the problem domain, and the needs of users, even though some
attention might be focused on high-risk aspects of a proposed design. Or it might be produced later
in the project, when most attention is focused on the internal workings of the system, even though
some questions concerning the problem domain are still surfacing.

Some methodologists name their models by when they are produced. We prefer to distinguish
models by what they describe, rather than by when they are built. Then development activities can
be distinguished by what kinds of models they lead to. We can distinguish models of the world,
models of the required properties of a system, and models of the internal workings of a system. We
call these domain models, system models, and design models. They are the result of activities
called domain analysis, systems analysis, and design. It’s perfectly okay to do some design in the
early stages of a project. And you’ll still be doing (a little) domain analysis when most of the effort
is on coding. If you uncover a domain fact while coding, don’t assume it’s a design issue. Add it to
the domain model.

Concern for the internal workings of software pervades most activities in the Rational Unified Pro-
cess, whose authors, Jacobson, Booch and Rumbaugh (1999, page 175) have this to say about the
analysis model in RUP (the phrase “how to realize” is significant):

“Outlines how to realize the functionality within the system, including architecturally significant
functionality; works as a first cut at design.”

A popular view of development is represented by the line in the left-hand diagram below. Devel-
opment begins with vague, high-level descriptions of aspects of a system. Development proceeds
in a more-or-less straight line by adding detail at progressively lower-levels.

A changing world
• As the world goes about its business, it changes
• We model these changes explicitly
- Each discrete change is called an event

• We have a model of time to support the concept of discrete changes.



High-quality modeling in UML © InferData Corporation 2001-2204 11

This view of development became known as top-down development, and is epitomized by
approaches based on data-flow diagrams. In fact, the original proponents of top-down develop-
ment never suggested that a description at one level of abstraction should have its terms defined in
the next level down. 

Rather, they argued that the development space is at least two-dimensional. Level of precision and
level of abstraction are not on the same axis. It is possible to add precision without moving to a
lower-level of abstraction.

The line in the right-hand diagram becomes a feasible path. Start with models based on a vague but
high-level view of the world and the required software. Work on these models, making them more
precise whilst remaining at a high level of abstraction. Then start to become more concrete by
designing the internal workings of the required system.

Many UML-based methods retain the view that we progressively add detail to our descriptions,
and that, to do so, we become more concrete. There is a danger associated with such top-down
approaches. Precision is added by adding detail at lower levels. So some analysis-level decisions
are not made until we are working at a lower level. Many developers will recognize the problem—
they are left to finish the analysis while writing the code.

In our approach, we distinguish between domain analysis, systems analysis (which is largely
black-box), and internal design (including architecture). In each activity, we can build models at
whatever level of precision is appropriate (we’ll see an example soon). And, most importantly, we
do not prescribe the order in which you should undertake the activities. On a given project, you
might, for example, do some design work to see if you can connect two technologies. Knowing
that you can, you develop a specification for a system. When the system is in place, you explore
the domain, looking for opportunities to re-engineer the business around new, related systems. So,
you carried out design, then systems analysis, then more design, and then domain analysis.

Of course, you cannot build software that exhibits continuity with the world unless you are pre-
pared to model that world. So, even if you do not deliberately explore the domain looking for new

high-level

low-level
precisevague

high-level

low-level
precisevague



High-quality modeling in UML © InferData Corporation 2001-2204 12

opportunities to introduce systems, you must bring world knowledge into your systems analysis
models and your design models.

Detail is not necessarily implementation

Here is another way to view the topic of the previous section, which argued that you can add preci-
sion to a model without going to a lower-level. What sometimes confuses modelers, and business
people, is that adding detail in order to be precise can seem like adding the kind of detail that
should appear in a program. Yes, sometimes it is the same kind of detail. But that’s because pro-
grams implement the rules of the business. Here’s an example, taken from a problem domain con-
cerned with bank accounts and cash withdrawals. Consider this function, written in Java:

/**
 * Can amount ‘m’ be withdrawn from account ‘a’?
 */
Boolean cashWithdrawalAuthorized( Account a, Money m ) {

return
( m <= a.balance
  & m <= a.amountRemainingFromDailyCashLimit
  & m <= a.amountRemainingFromMonthlyCashLimit )

}

Which details of this function do not belong in a business-oriented domain model? Here are some:

• the detail that it is written in Java, and hence all the details of the syntax (although the choice of
programming language could be a non-functional requirement on a system).

Here are some other details that certainly do belong in a domain model:

• there are 3 separate checks on cash withdrawals
• more precisely: the amount to be withdrawn must be less than or equal to
- the account balance
- the amount remaining from a daily cash withdrawal limit
- the amount remaining from a monthly cash withdrawal limit.

Distinguish phases and activities
• Development activities include domain modeling, system modeling, design
• Don’t assume that all domain modeling must happen in the first phase, and all design in

later phases



High-quality modeling in UML © InferData Corporation 2001-2204 13

Here’s how these details might show
up in a domain model. We might
have a type model showing the type
Account and its properties (only
some are shown in the diagram). The
type model supports the specifica-
tion of the event of withdrawing cash
(again, only some details of this
event specification are shown).

As you would expect, the rules the
business imposes on cash withdraw-
als show up in domain models and in
program code. The rules are the
same in both worlds.

Of course, there are differences. The
syntax is different. And where the
rules show up is different: in our
example, the rules show up as a pre-
condition on an event in a domain
model, and as a checking function in a Java program. The domain model and the program could
both be expressed in other languages, and organized in other ways, but the rules would still show
up somewhere, and somehow, in both the domain model and the code.

One final point: naturally, you will want to build domain models that do not show all this detail.
You’ll want to build them in the early days of modeling, when you would otherwise sink under the
weight of too much detail. And you’ll want to build them at various stages in the life of the domain
models, to provide summary models for those who want an overview. Below is a fragment of an
activity diagram that discusses cash withdrawal, without any details of what makes a withdrawal
acceptable. The model is still high-level, but it is imprecise.

But when you expand the step in the activity diagram that says

decide if customer can withdraw selected amount

into a precondition on an event specification, saying

the amount to be withdrawn must be less than or equal to

Event type specification
    withdrawCash( a : Account, m : Money, ...)
        -- Withdraw amount 'm' from account 'a' ...
    precondition
        m <= a.balance
        m <= a.amountRemainingFromDailyCashLimit
        m <= a.amountRemainingFromMonthlyCashLimit
    postcondition
        ...

balance : Money
dailyCashLimit : Money
dailyGoodsLimit : Money
monthlyCashLimit : Money
monthlyGoodsLimit : Money
amountRemainingFromDailyCashLimit : Money
amountRemainingFromMonthlyCashLimit : Money
...

Account
B

a
n

k
A

T
M

C
u

st
o

m
e

r

continued
from previous
page

select
amount

seek
authorisation

decide if customer can
withdraw selected amount



High-quality modeling in UML © InferData Corporation 2001-2204 14

the account balance, and
the amount remaining from the daily cash limit, and
the amount remaining from the monthly cash limit

you are moving towards a more precise domain model. You are not adding implementation detail.

Use Case Descriptions

The UML User Guide (Booch et al 1999, p220) says that a use case “is a description of a set of
sequences of actions, including variants, that a system performs to yield an observable result of
value to an actor.”

In this section, we shall begin to write a use case
description that abstracts away from “sequences of
actions.” In a later section we shall explore how to
connect descriptions of behavior to descriptions of
structure, and we shall be able to enrich the example
begun here. The goal is to avoid making design deci-
sions when building models of the external view of a
system.

When you travel on the railway network in Britain,
you can buy tickets from vending machines. Here is
a simplified, schematic diagram of such a machine.

To buy a ticket, you select a destination, such as
Brighton or London, and you select which type of
ticket you wish to buy, such as a one-way or a round-
trip ticket. If you are going to London, you can buy
an all-day ticket, which lets you travel on the London
Underground as well. 

The machine does not let you select a type of ticket until you have selected a destination. When
you have selected a destination, it illuminates the buttons for just the valid ticket types, and waits
for you to press one of them. When you have selected your destination and a valid ticket type, the
machine displays the cost of the ticket. When you have inserted enough money to pay for the
ticket, the machine prints the ticket, dispenses the ticket, and dispenses any change you are due.

Level of precision v. level of abstraction
• When you add detail to a model, it can be detail that adds precision to an imprecise model
• Adding detail doesn’t necessarily mean you’ve moved to a lower level of abstraction.

Brighton

Falmer

London

Hove

One-way

Round-trip

All-day

Coins

Ticket and
change

Self-service tickets

£4.50

Amount
to pay



High-quality modeling in UML © InferData Corporation 2001-2204 15

There is more to buying a ticket from the real
machine than this. You can pay using banknotes,
you can cancel when you are part-way through
inserting money, and so on. But these additional
details are not essential to our discussion. The
box alongside shows the main sequence of
actions in the “buy ticket” use case.

A developer following a traditional, use-case-
based method would now explore variants to this

flow, to cover cases such as the user canceling. We shall take a different route. We shall begin to
rewrite the description of the use case, abstracting away from a sequence of actions. To abstract
away from a sequence of actions, we use the precondition and postcondition clauses in a UML use
case description.

To get started, we need to name the use case, and give it some parameters, thus:

buyTicket( tt : TicketType, here : Station, destination : Station, tendered : Money )
-- A customer buys a ticket of type ‘tt’ from ‘here’ to some
-- ‘destination’ station, supplying a ‘tendered’ amount of money.

There are constraints on the relationships amongst the ticket type, the two stations, and the amount
of money tendered. These can be expressed in a precondition on the use case, which we add to the
signature given earlier:

buyTicket( tt : TicketType, here : Station, destination : Station, tendered : Money )
-- A customer buys a ticket of type ‘tt’ from ‘here’ to some
-- ‘destination’ station, supplying a ‘tendered’ amount of money.

precondition
-- The ticket type ‘tt’ must be valid for a journey from ‘here’ to
-- the desired ‘destination’.

-- The amount ‘tendered’ must be at least the cost of a ticket of
-- type ‘tt’ for a journey from ‘here’ to ‘destination’.

We shall write a postcondition in a later section. For now, let us begin to think about designing the
machine that embodies this precondition. We’ll concentrate on the first part of the precondition,
that the ticket type must be valid for the destination. How might you design a system that presents
this precondition to railway passengers in a user-friendly way? For example, how could you show
that, if you start in Falmer and go to Brighton, you cannot buy an all day ticket (which is intended
for use only in London)? How could you avoid frustrating passengers by giving them error mes-
sages saying that the combination of destination and ticket type they have chosen is invalid? You
could, of course, build the interface to the machine so that passengers must first select a destina-
tion, and then the machine offers only the valid ticket types for that selected destination (which is
exactly how the machine is currently designed).

In other words, the precondition

-- The ticket type ‘tt’ must be valid for a journey from ‘here’ to
-- the desired ‘destination’.

is a requirement, and the description of the use case as a sequence of actions

Customer selects destination;
Machine illuminates valid ticket-type buttons;

Customer selects destination;
Machine illuminates valid ticket-type buttons;
Customer selects valid ticket type;
Machine displays cost of ticket;
Customer inserts coins to at least the cost;
Machine prints ticket;
Machine dispenses ticket;
Machine dispenses any necessary change.



High-quality modeling in UML © InferData Corporation 2001-2204 16

Customer selects valid ticket type;
…

is one possible design for the user interaction domain of a machine that fulfills this requirement
(and a very good design, too). 

To demonstrate that it really is a design, we need only devise some alternative design that fulfills
the same requirement. How about this one: a passenger either selects a destination, in which case
only certain ticket-type buttons are illuminated and operational, or a passenger selects a ticket
type, in which case only certain destination buttons are illuminated and operational. It might not be
such a good design (because it might be more confusing for occasional rail travellers, such as tour-
ists, without being very much better for frequent travelers). But it is an alternative design, enabling
us to see more clearly that a “sequence of actions” embodies design decisions. It is easier to keep
such decisions out of assertions, such as the precondition above, than out of sequences of actions.

Jacobson, Booch and Rumbaugh (1999, page 164) acknowledge that use case descriptions “often
contain implicit decisions about user interfaces,” and refer to (Constantine and Lockwood 1999)
where there is advice on how to avoid this problem. The advice is consistent with our approach,
though we are more thorough about defining the terms in our models.

We do sometimes write use cases as sequences of interactions in early modeling. We do it when
we are capturing the design of an existing system we want to understand. Having captured the cur-
rent design in terms of sequences of user interactions, we abstract to higher-level descriptions
based on preconditions and postconditions (and, as we shall see shortly, these will be supported by
a type model). At this higher level, we can see more clearly what to re-engineer.

Connecting Models to Architecture

In this section, we continue the example of buying tickets from a vending machine, begun in the
section entitled Use Case Descriptions. After some false starts, and after growing our understand-
ing of the requirements for the vending machine, we produce the following model of the types of

Use case descriptions
• A use case described as a sequence of interactions necessarily includes some design deci-

sions
• The same use case described using a precondition and a postcondition can be free of such

design decisions.



High-quality modeling in UML © InferData Corporation 2001-2204 17

objects we are interested in (we’ll show you how we produced it in the section entitled Introducing
Cross-Checking).

Each time a passenger buys a ticket, we have sold a journey (more precisely, we have sold the right
to make a journey). Each sale of a journey is for one possible type of journey. Different types of
journey are distinguished by where they are from, their destination, and their category (one-way,
round-trip, or all-day). For instance, a one-way from Hove to Brighton is one type of journey, but
a round-trip from Hove to Brighton is another type. Each type of journey has an associated cost.
Each journey sale has an amount tendered and an amount of change. 

Using this model of the structure of our world, we can write an essential use case description,
using a precondition and a postcondition. We begin by renaming the use case as “buy journey,”
since a ticket is just a token demonstrating an entitlement to a journey, and by renaming “ticket
type” as “journey category.”

Here is the use case description, consisting of a signature, a precondition, and a postcondition.

buyJourney( category : JourneyCateory, here : Station, destination : Station, tendered : Money )
-- A customer buys a journey of a certain ‘category’ from ‘here’ to some
-- ‘destination’ station, supplying a ‘tendered’ amount of money.

precondition
-- The selection must be valid: there must be a journey type ‘jt’ 
-- from ‘here’ to the desired ‘destination’ of the given ‘category’

-- The amount ‘tendered’ must be at least the ‘cost’ associated with journey type ‘jt’.

postcondition
-- There is a new journey sale ‘s’, for which
-- ‘s.journeyType’ is that ‘jt’ for which
-- ‘jt.here’ is the given ‘here’
-- ‘jt.destination’ is the given ‘destination’
-- ‘jt.journeyCategory’ is the given ‘category’
-- ‘s.tendered’ equals ‘tendered’
-- ‘s.change’ equals ‘tendered’ minus the ‘cost’ of a journey of type ‘jt’.

As we showed in the section entitled Use Case Descriptions, the precondition expresses require-
ments, and the machine, in its current design, checks these preconditions partly by sequencing the
passenger’s actions.

1

1

1  destination

1  here

*

*

*

*Station JourneyCategory

cost : Money

JourneyType

tendered : Money
change : Money

JourneySale

Each object of a given
'journey type' captures one
valid combination of two
stations ('here' and
'destination') and a journey
category (one-way, round
trip, or all day)



High-quality modeling in UML © InferData Corporation 2001-2204 18

The postcondition is similarly abstract (and so deserves more supporting commentary than we
have given it here). It defines the required changes in the state within the machine, but only in
terms of core concepts. For example, a printed ticket is a report that acts as proof of a completed
sale. We could design other ways to allow passengers who buy a journey to board trains. So tickets
do not belong in the core domain.

Of course, what gets printed on a ticket is important. We have modeled the information content of
a ticket here in the core, but we can explore the details of the layout of a ticket when we address
the user interaction domain. This sits between the user interface domain (not a wholly graphical
interface, for this machine) and the core. It connects actions at the user interface (such as pressing
a button) to use cases in the core, and connects objects in the core (such as a journey type object) to
observable phenomena at the user interface (such as displaying the cost).

Having a model of the different domains to be addressed makes it easier to write descriptions that
focus on one issue at a time (such as core functionality versus sequencing user interaction).

Connecting business and IT

This short section tells the story of the previous section in another way. 

IT supports business. You can think of the relationship between business and IT using three layers
(see the diagram on the next page). There is a business layer, which is concerned with business
processes and business objects flowing through the various functional units of the business. There
is a layer containing application logic and data—software that embodies the business processes
and business objects. The two layers meet in a presentation layer.

Essential use 
cases concern 
the core

Core

GUI

User
interaction

Detailed use cases 
concern interactions 
between actors and 
the core

More on architecture
• Use architectural models that support the need to model different aspects of a system
• Examples of different aspects include the core of a system versus how users interact with

the core functionality.



High-quality modeling in UML © InferData Corporation 2001-2204 19

Many UML-based development methods are use-case driven. The requirements of the application
layer are expressed in terms of how users interact with the system. In other words, the presentation
layer is used for specifying what goes on in the application and data layers.

In the InferData approach, the business layer is modeled explicitly, in a domain model. By the
principle of continuity, the application and data layers (which we call the core of the system) are
modeled so that they respect the structure and behavior of the business layer. The presentation
layer is where interaction designers choose how actors will interact with the core of the system.
The presentation layer contains requirements on presentation, but not requirements on core func-
tionality.

More on use cases
• The presentation layer is important—getting it right makes the system easy to use.
• A system’s functionality is accessed via its presentation layer.
• But this functionality need not be described using the presentation-layer concept of inter-

action between a user and a system.
• Instead, it can be described precisely using a precondition and a postcondition, supported

by a type model.



High-quality modeling in UML © InferData Corporation 2001-2204 20

Introducing Cross-Checking

In an earlier section, entitled Connecting Behavior to Structure, we implicitly cross-checked two
models. In this section, we make that cross-checking explicit. In a later section, we list some other
valuable cross-checks.

Let’s go through the specification of the “buy journey” use case, a step at a time, discussing what
implications it has for a model of object types. The discussion gets quite detailed, but you can
safely ignore the details and concentrate on the point of what we are doing—we are building a
model of structure (a type model) so that it clearly expresses exactly the concepts needed to spec-
ify a piece of behavior (an essential use case). Through continual cross-checking, the model of
structure and the model of behavior are kept in step, and end up fully consistent.

The specification of the “buy journey” use case begins with a signature:

pick
goods

prepare
invoice

: Invoice
[unpaid]

receive
invoice

C
us

to
m

er
A

cc
o

u
n

ts
W

a
re

h
o

u
se

: PackingNote

BUSINESS LAYER

Businesses are commonly organized
into functional units (often called depart-

ments).

Business processes flow through these
units, creating, modifying, transporting,

and destroying business objects.

Some steps in some of the business
processes are supported by computer

systems.

PRESENTATION LAYER

People interact with an IT system
through a presentation layer.

APPLICATION AND DATA LAYERS

Code that embodies business logic
manipulates software objects corre-

sponding to business objects.

The software objects persist in some
kind of storage (such as a relational

database).



High-quality modeling in UML © InferData Corporation 2001-2204 21

buyJourney( category : JourneyCateory, here : Station, destination : Station, tendered : Money )
-- A customer buys a journey of a certain ‘category’ from ‘here’ to some
-- ‘destination’ station, supplying a ‘tendered’ amount of money.

To support this, we need a model that declares three object types: JourneyCategory, Station, and
Money (this last type might be considered a utility type to be declared on a separate diagram, but it
must be declared somewhere). At this stage, there is no need for any relationships amongst the
types.

The precondition begins thus:

precondition
-- The selection must be valid: there must be a journey type ‘jt’ 
-- from ‘here’ to the desired ‘destination’ of the given ‘category’

Now we need a type JourneyType, and it must have a JourneyCategory property, and two Station
properties, with roles ‘here’ and ‘destination.’ This object type model does the job:

The project dictionary will define that the existence of a JourneyType object indicates a valid com-
bination of ‘here’ and ‘destination’ stations and a journey category. The following snapshot is one
of several constructed with the help of domain experts to help test the multiplicity constraints. The
snapshot confirms that there can be many types of journey that begin and end at any given station.

The snapshot shows that you can buy journeys of these types:

StationJourneyCategory Money

1
1  destination

1  here

*

*
*Station JourneyCategoryJourneyType

Brighton :
Station

London :
Station

Hove : Station

: JourneyType

: JourneyType

: JourneyType

one-way :
JourneyCategory

round-trip :
JourneyCategory

all-day :
JourneyCategory

here

here

destination

destination

here

destination



High-quality modeling in UML © InferData Corporation 2001-2204 22

• one-way journeys from Hove to Brighton
• round-trip journeys from Hove to Brighton
• all-day journeys from Brighton to London.

The precondition continues thus:

-- The amount ‘tendered’ must be at least the ‘cost’ associated with journey type ‘jt’

The amount tendered is already modeled, as an input to the event, but we must enrich JourneyType
with a cost property. And we must enrich Money with a way to express “at least,” so we add a
“greater than or equal to” property to Money (we show it as a parameterized attribute with an oper-
ator-like name. It could be implemented directly as a function or an operator in class Money).

The postcondition says this:

postcondition
-- There is a new journey sale ‘s’, for which
-- ‘s.journeyType’ is that ‘jt’ for which
-- ‘jt.here’ is the given ‘here’
-- ‘jt.destination’ is the given ‘destination’
-- ‘jt.journeyCategory’ is the given ‘category’
-- ‘s.tendered’ equals ‘tendered’
-- ‘s.change’ equals ‘tendered’ minus the ‘cost’ of a journey of type ‘jt’.

We need a type JourneySale with properties for “journey type”, “tendered”, and “change”. We
model two of these properties as attributes, and one as an association. We also need an “equals”
property on type Money, as well as a “minus” property.

 

We have just explored an example of cross-checking from a specification of a piece of behavior to
an object type model. The checks were that:

• Every argument must be of a type in the object type model.
• The terms in every expression in the precondition and every expression in the postcondition

must map to properties defined in the type model.

cost : Money

JourneyType

">="(other : Money) : Boolean

Money

1

1

1  destination

1  here

*

*

*

*Station JourneyCategory

cost : Money

JourneyType

tendered : Money
change : Money

JourneySale
">="(other : Money) : Boolean
"="(other : Money) : Boolean
"-"(other : Money) : Money

Money



High-quality modeling in UML © InferData Corporation 2001-2204 23

Had we defined any invariants on the type model, there would be another check:

• Behavior specifications must not contradict invariants.

These checks apply to various kinds of behavior specifications: event specifications (in domain
models), essential use case specifications (in system models), and method specifications (in design
models).

Constraining the UML

In this section, we continue the theme of cross-
checking between models. In order to define
effective cross-checks, we must sometimes
constrain what UML means. We use state dia-
grams as an example. 

Here is a UML diagram of a state machine
forming part of a domain model. It describes
objects of some type T, which can be in one of
three states: s1, s2 or s3. Objects of type T
make transitions from one state to another as a
consequence of events e1, e2 and e3.

You can relate the state machine to the type T in different ways. UML doesn’t tell you how to
relate them. By choosing how they relate, we can build consistency-checks into the process of
building models. 

A reader from a real-time background might read the diagram as saying that objects of type T must
have an event controller. Someone trained in Syntropy (Cook and Daniels 1994) might read the
diagram as saying there must be dynamic subtypes of type T for the states s1, s2, s3. Someone
trained in Catalysis (D’Souza and Wills 1999) might read the diagram as saying that type T has
three boolean attributes, s1, s2 and s3, with an invariant to ensure mutual exclusion. But the inter-
pretation we choose (because we have found it be extremely helpful when building models) is this:
every state in the state diagram must be distinguishable from the other states using only existing
properties of objects of type T. If the existing properties are inadequate for this task, the model of
T needs more work.

In our experience, if you build state machines for key object types, and perform this cross-check
very carefully, you will almost always learn something about the world you are modeling. Partly,
this is because modeling with state machines entails a significant change of viewpoint. When you
are building a model of types of objects, and the associated behavior that changes objects of those
types, you are modeling the state of a world or a system, and how that state can change, but you are

Cross-checking
• Every expression in a specification of behavior can be cross-checked to concepts in a

model of structure.
• Indeed, the model of structure can be “driven” by the need to model behavior.
• There are many other useful cross-checks, but this one is particularly powerful.

s1 s2

H

s3

e1

e2
e3e3



High-quality modeling in UML © InferData Corporation 2001-2204 24

doing so over the whole system at one time. By contrast, when you build state machines for key
object types, you are still modeling state, and how state can change, but now you are doing it a
type-at-a-time. This switch from an holistic view to a one-thing-at-a-time view often helps you to
discover important facts you had previously overlooked.

Further Cross-Checks

This section lists further checks for consistency amongst UML’s various models. Certain checks
are annotated with remarks in [square brackets]. The list is not complete (for instance, we have
omitted cross-checks concerning UML diagrams not covered in this article, such as activity dia-
grams and interaction diagrams).

Some of the checks are powerful aids to analysis. For example, building state machines for certain
types of objects often reveals overlooked units of behavior. For example, modeling copies of
books in a library might reveal that books can be returned after they have been recorded as lost,
and books can be stolen while on hold against reservations. If you build systems that do not allow
users to record the occurrence of such events, your users will rightly complain that the systems are
uncomfortable to use.

Other checks simply tidy up the models and remove small inconsistencies of naming, and so on.

The cross-checks are divided into sections according to what kind of model is being cross-checked
against what other kind.

From example to generalization

This is a meta-level check, acknowledging the importance in the InferData approach of working at
two levels: the level of particular examples, and the level of generalizations, or rules.

• Every model at the example level must conform to the corresponding general-level model. For
example, snapshots must conform to type models.

From snapshot to object type model

[The checks in this section are examples of what might be called syntax checks on diagrams.]

• Every object must be an instance of a type in the type model.

More on cross-checking
• By design, UML is open to number of interpretations.
• By constraining how you interpret UML, you can get the benefit of more cross-checks

between models.
• Cross-checks help us
- ask the right questions during modeling
- build models that make sense
- test whether our models are mature
- avoid silly inconsistencies between models.



High-quality modeling in UML © InferData Corporation 2001-2204 25

• Every link in a snapshot must be an instance of an association in the type model. 
• In a snapshot, the number of links between objects must agree with multiplicity constraints on

the type model.
• Every role name on a link in a snapshot must match the role name on the corresponding associ-

ation end in the type model.

From snapshot to scenario
• For every snapshot, it must be possible to construct a scenario leading to the snapshot. [Other-

wise, you might be overlooking some behavior.]

From behavior specification to type model

(Behavior specifications are event specifications, essential use case specifications, and method
specifications.)

• Every argument must be of a type in the type model.
• The terms in every expression in the precondition and the postcondition must be defined in the

type model. [This is a powerful check. Avoid describing behavior without building a type
model, and then always apply the cross-check.]

• Behavior specifications must not contradict invariants.

From behavior specification to snapshot
• The precondition constrains the before state. It must be possible to construct a snapshot satisfy-

ing the precondition and conforming to the type model.
• The postcondition constrains the change from the before state to the after state. It must be pos-

sible to construct a pair of snapshots satisfying the postcondition and conforming to the type
model.

From scenario to behavior list
• Every interesting change of state in a scenario must correspond to a unit of behavior. [Devising

scenarios is a powerful way to test models that are thought to be mature. Because of other
checks, testing models of behavior also tests models of structure.]

From type model to behavior list

[These are examples of simple checks that can occasionally yield useful insights.]

• For each type of object there must be a unit of behavior in which instances of the type are cre-
ated.

• For each attribute there must be a unit of behavior in which the value of the attribute is set.
• For each association there must be a unit of behavior in which instances of the association (i.e.,

links) are created.
• For each property that is not constant there must be a unit of behavior in which the value of the

property is changed.



High-quality modeling in UML © InferData Corporation 2001-2204 26

From state diagram to type model
• Every transition must be associated with a unit of behavior. [Building state machines often

reveals overlooked units of behavior.]
• Every state must be distinguishable from all other states using only properties defined on the

type model. [A very powerful check. Usually yields important insights, albeit detailed ones.]
• For every state and for every event, the next state must be defined, either visually on the state

diagram or by a rule (for example, the Syntropy-style “accept all events”).

(On state diagrams with nested states, apply the checks to the lowest-level states. On state dia-
grams with concurrent states, an object’s state is defined by one state from each concurrent sec-
tion. Apply the checks accordingly.)

Within a state diagram
• There must be a starting state.
• Every state with no outgoing transitions must model a terminal state in the world being mod-

eled.

Within a type model
• If the set of objects reached by one path through a type model has a fixed relationship to the set

reached by another path (e.g., they are the same set), there must be an invariant to capture this
fact.

Testing models

We have suggested in various places that models can be tested. In this short section, we review two
important ways to test models, one of which concentrates on structure and the other on behavior.
Then we show how they can work together.

Testing structure

An object type model is a general-level model of object types, their attributes, and their associa-
tions to other types. The corresponding example-level model is a snapshot. A type model can be
tested by devising valid snapshots and checking whether they are allowed by the type model, and
by devising invalid snapshots and checking whether they are disallowed by the type model. The
mind-set needed to perform this testing is exactly that needed to test code. If a model is thought to
be mature, devise snapshots to try to break the model. If you fail to break it, you increase your con-
fidence in the model. 

Testing behavior

In our approach, behavior is captured in event specifications in a domain model, and essential use
case specifications in a system model. Each specification of a unit of behavior will have a precon-
dition and a postcondition. 

A scenario is a sequence of happenings in the world (you can think of it as a storyboard). The
behavioral aspects of a domain model can be tested by devising scenarios, and checking whether
the relevant steps in these scenarios are occurrences of events of known event types. Irrelevant
steps are those that can be argued to be out of scope. The behavioral aspects of a system model can



High-quality modeling in UML © InferData Corporation 2001-2204 27

be tested by devising scenarios and checking whether the relevant steps are occurrences of events
for which there are corresponding essential use cases.

Combining the tests

You can test structural and behavioral aspects of your models by running scenarios and checking
all the snapshots you pass through. There are two phases. First, devise a test. To do this, devise a
starting situation, and devise a scenario that begins in this starting situation. Then apply the test.
To do this, first draw a snapshot showing the starting situation. Then, for each relevant step in the
scenario, draw another snapshot to show the change this step brings about. Along the way, check
that every snapshot you draw is allowed by the model of object types, that every step is modeled
by a unit of behavior (event or essential use case), and that the specification of each unit of behav-
ior correctly describes the change the step brings about.

Example

Here is a scenario for a video hire store, used to test a domain model.

Starting state:

• It is June 4th, 2001
• Kim has copy 12 of Titanic out on rent
• All other copies of Titanic are also out on rent.

Steps in the scenario:

1. Peter reserves Titanic on June 5th, 2001
2. Kim returns copy 12 of Titanic on June 6th, 2001
3. LowPrice puts the copy on hold for Peter
4. Peter receives a notice on June 7th that LowPrice is holding a copy of Titanic
5. Peter calls at the store and asks to rent Titanic
6. LowPrice staff cannot find the copy

Imagine that, in the state model for video copy objects, the only way a copy can leave the
“onHold” state is in a “rent” event, as in the left-hand model below. We have just discovered that
our model is not a faithful-enough model of the world. We must add an event “mislay,” and  a state
“mislaid,” as in the right-hand model.

(There is, of course, yet more work to be done. For instance, we’ll need to add a further event to
model finding a mislaid copy.)

We now can rewrite a portion of the scenario:

mislay

onHold rented
rent

onHold rented
rent

mislaid



High-quality modeling in UML © InferData Corporation 2001-2204 28

4. Peter receives a notice on 7th June that LowPrice is holding a copy of Titanic
5. (new) LowPrice mislays copy 12 of Titanic
6. Peter calls at the store and asks to rent Titanic
7. The copy is not available to rent, because it has been mislaid

During systems analysis, we determine that it is acceptable to detect an occurrence of the “mislay”
event later than when it occurred, specifically, when a customer comes to collect a copy on hold.
During the design of the user interaction, we make sure to include the ability to mark a copy as
mislaid as part of the interaction concerned with checking out a copy on hold.

Coherence

This final section brings together the content of earlier sections, with the goal of showing that we
have presented a coherent approach to modeling—its different elements work in concert.

In the section entitled Architectures, we showed that you can divide a model up along technical
lines, so that, for instance, you can model the core object types and the core functionality sepa-
rately from modeling how this functionality is delivered to users. In the section entitled Use Case
Descriptions we showed that you can describe functionality abstractly, without including unneces-
sary design decisions. It is much easier to work with these abstract descriptions if you know that
they belong in the core domain, and that somewhere else there is an interaction domain in which to
design user interactions with this core. Our architectural models support separation of concerns in
modeling.

In the section entitled Connecting Behavior to Structure we showed how to build a model of object
types to provide a vocabulary for the expressions in the precondition and postcondition of a speci-
fication of a use case. And we have mentioned that a project dictionary would give this vocabulary
meaning (although we haven’t discussed how to write the necessary definitions). There are three
layers at work here. In the middle is a type model that introduces the terms we need in our vocabu-
lary. Above it is a layer in which we use the terms to build models of behavior, by writing precon-
ditions and postconditions that are cross-checked to the type model. Beneath the middle layer is a
supporting layer containing the definitions of our terms.

In the section entitled Constraining the UML, we noted that switching from thinking about all the
types in a model to thinking about them one at a time can free the mind to uncover new insights. In
the section entitled Further Cross-Checks, we noted that there is a meta-level check, that all exam-
ple-level diagrams agree with the corresponding general-level diagram. Once again, being able to

Testing
• General-level models include type models, state models and event specifications.
• Example-level models include snapshots and scenarios.
• These example-level models can be used to test general-level models.
• Testing can
- uncover areas that need further modeling
- reveal inconsistencies between models
- indicate the maturity of models.



High-quality modeling in UML © InferData Corporation 2001-2204 29

switch between examples and generalizations can free the mind to uncover new insights. And the
cross-checks between examples and generalizations ensure that there is still only one underlying
model.

In the section entitled Development Activities we were careful not to prescribe the order in which
you do domain analysis, systems analysis and design. For example, on your next project, it might
be sensible to do a small amount of systems analysis, to find out roughly what is wanted. Then you
might do some design, to check that you can make two technologies work together, or to try out a
clever algorithm from a handbook. Then you might devote some effort to domain modeling, to
make sure you understand the context your software will go into. While building a domain model,
you wonder whether to explore some particular aspect of the business domain. You talk to the cli-
ent to see whether there are plans to automate that aspect—in other words, you go back to doing
some systems analysis. Generally, it is not helpful to prescribe an order in which developers
should perform activities. It is more helpful to explain what the different activities address and
how they interrelate. Every time a developer asks a question or gives an answer, he or she should
care whether it concerns the world, the requirements for a system in that world, or a design for
such a system. But a developer should not be prevented from asking a question about how the
world works because “we are now in the design phase.” Nor should a question about how the
world works be treated as a design question just because “we are now in the design phase.”

References

Booch G, Rumbaugh J and Jacobson I (1999). The Unified Modeling Language User Guide. Add-
ison Wesley.

Describes the various elements of the UML, and offers advice on how to use them.

Coleman D, Arnold P, Bodoff S, Dollin C, Gilchrist H, Hayes F and Jeremaes P (1994). Object-
oriented development. The Fusion method. Prentice Hall.

The Fusion method showed clearly that developers could think about object-oriented systems without think-
ing in terms of message passing between objects.

Constantine L and Lockwood L (1999). Software for Use. Addison Wesley.

Contains excellent advice on modeling systems that will be easy to use. Carefully distinguishes essential use
cases from more concrete, interaction-oriented use cases.

Summary
• Distinguish
- modeling the world
- modeling requirements on a system
- modeling designs.

• Use architectural models that support this separation of concerns.
• Model from different points of view (types, events/use cases/methods, states, objects, …).
• Never get stuck—just come at the problem from a new point of view, but …
• Continually cross-check your models.



High-quality modeling in UML © InferData Corporation 2001-2204 30

Cook S and Daniels J (1994). Designing object systems. Object-oriented modelling with Syntropy.
Prentice Hall.

The Syntropy method made it clear that we can model three things separately: the world, systems as seen
from the outside, and the internal workings of software. When not modeling the internal workings of soft-
ware, Syntropy uses events to model behavior.

D’Souza D and Wills A (1999). Objects, Components and Frameworks with UML: The Catalysis
Approach. Addison Wesley.

Like Fusion and Syntropy before it, Catalysis puts strong emphasis on modeling the types of objects of inter-
est, and using such models as the basis of describing behavior.

Fowler M (1997). UML distilled. Applying the standard object modeling language. Addison Wes-
ley (1st edition).

An excellent, short introduction to the UML. There is now a second edition, but the quotation is from the
first edition (and we’ve checked that the author hasn’t changed his mind about what the quotation says!)

Jackson M (1983). System Development. Prentice Hall.

Describes JSD, which is not a fully object-oriented approach. However, the book is a clear introduction to
the principles of modeling.

Jacobson I, Booch G and Rumbaugh J (1999). The Unified Software Development Process. Addi-
son Wesley.

Describes Rational Corporation’s proprietary process, which uses UML. The process is centered around
use cases.

OMG (1999). OMG Unified Modeling Language Specification. Object Management Group (Ver-
sion 1.3).

The OMG’s official definition of the UML (available on-line).


