
www.SYS-CON.com/WebSphere O C T O B E R 2 0 0 446

EMF is capable of creating
sophisticated editors from
abstract business models.

These editors are implemented as
plugins for Eclipse. EMF creates
feature complete implementations
including persistence, business
model implementation, editing
framework and editors.
 (Note: WebSphere Studio supports
Eclipse plugins. The Eclipse IDE may
also be used to directly develop in
WebSphere.)
 In this article, we’ll look at the
anatomy of EMF and what it pro-
duces by building a simple Eclipse
editor for keeping track of music col-
lections.

EMF and MDA
 The process of using EMF is com-
patible with the MDA approach of
OMG, however it is missing some of
the essential properties of an MDA
tool.
• EMF is not a general-purpose

code-generation tool. It generates
Eclipse plugins. It would be dif-
ficult to make EMF generate, let’s
say, a .NET application.

• EMF generates code from models.
Strictly speaking, an MDA tool

should generate platform-specific
models (PSM) before generating
code.

 Even though it may not line up
with OMG 100%, EMF is one of the
most powerful ambassadors for the
MDA approach.

Process of Using EMF
 In Figure 1 we have outlined the
typical process used when develop-
ing plugins with EMF.
 First, we need to create a busi-
ness model (OMG’s PIM). In EMF,
this model is called the ecore model.
The ecore model contains structural
requirements for the implementation
of the editor.
 Second, we need to configure
the code-generation options. These
options are stored in a model called
the genmodel. The genmodel deco-
rates the ecore model with informa-
tion specific to the solution domain
(in our case Java and Eclipse).
The third step is to generate the
code. This step uses the ecore model
and the genmodel to generate
the implementation for the editor
plugins.
 The generated code can now be

tested. It is feature complete, but a
rather naive implementation of an
editor. In most cases, a developer has
to take over the implementation of
sections of the generated code. EMF
has a feature that allows the devel-
oper to flag the code he/she wants to
enhance.
 After the code has been gener-
ated, a developer typically starts
an iterative process where various
discrepancies are fixed. The discrep-
ancies can be separated into three
categories:
• Errors in the business model:

Requires update to the ecore
model

• Suboptimal configuration of the
code generation options: Requires
changes to the genmodel

• Requirements for a more sophis-
ticated implementation than that
generated: Requires that the devel-
oper takes control of sections of
the generated code and modifies
the code.

 EMF has excellent support for this
iterative development process, allow-
ing the developers to fix and regener-
ate.

Creating the Models
 Let’s illustrate the various stages
and artifacts in EMF by creating a
simple application to keep track of a
music collection.
 We first need to create a busi-
ness model for the information
content the editor will manipulate.
In EMF, the business requirements
are captured in ecore models. The
ecore model is really just an XML file
with an “.ecore” extension, hence,
we could manipulate the XML file
directly. However, for convenience
EMF lets you define the ecore model
in many ways (see Figure 2):
• A built-in primitive editor (this

editor is actually an EMF gener-
ated editor!)

• Import from XML Schema
• Import from Rational Rose Models
• Import specially annotated Java

A high-level overview of its anatomy and artifacts

Eclipse Modeling
Framework

ECLIPSE

BY PETTER GRAFF

 The Eclipse Modeling Framework (EMF) is an open source code generation

tool distributed under the Eclipse umbrella. It is a tool created in the spirit of the

OMG’s Model Driven Architecture (MDA) and an excellent example of the power of

MDA.

Petter Graff is vice

president of InferData,

Ltd. He has more than 20

years of experience

building object-oriented

solutions. The last 10

years he has been

teaching and consulting

on enterprise

architectures for

Fortune 500

companies worldwide.

pgraff@inferdata.com

www.SYS-CON.com/WebSphereO C T O B E R 2 0 0 4 47

Interfaces (actually, this option is
a synchronized option. When the
Java interfaces change, the ecore
model is synchronized and vice
versa).

 The ecore model for the Music
library contains the structural rules
for the implementation. These rules
can be visualized in a UML class dia-
gram (see Figure 3).
 When creating class diagrams,
only a few constructs are used:
• Classes: Represents the object

types that we need to persist and
manipulate.

• Attributes: Attributes represents
properties persisted on the objects.

• Associations: Associations repre-
sent relationship between objects.
The associations have a few differ-
ent dimensions:

 – Containment: Associations may
represent containment relation-
ships. The semantic of this in
the ecore model is to specify
that an object has a lifetime
dependency to its container; for
example, if an artist is removed,
so is all of their work.

 – Directionality: Associations may
be unidirectional or bidirec-
tional. If an association is uni-
directional, it is only possible
to navigate the object model
from one of the types. E.g., in
our example, it is possible to
retrieve the works if we know
the artist, but it is not possible
to find the artist from some
work. An association can also
be bidirectional allowing navi-
gation in both directions.

 It is possible to create the ecore
model using the UML notation.
There are tools on the market that
directly create ecore models (e.g.,
Omondo-UML). Another alternative
is to import Rational Rose models.
 The UML diagram shown in
Figure 3 defines the ecore model
shown in Listing 1. The ecore model
can be browsed by the build-in ecore
editor shown in Figure 4.
 We can now create a genmodel
based on the ecore model file. The
genmodel adds properties to the
various constructs in the ecore file

(see Figure 5).
 The genmodel is also an XML file.
The genmodel decorates the ecore
model with a set of attributes defin-
ing specific configuration for gener-
ating Eclipse plugins. It may seem
strange to have two models (i.e., why
not just add the properties to the
ecore model?), but this is essential
from the perspective of MDA. If we
wanted to create another imple-
mentation based on the same busi-
ness model, we could do so without

changing the ecore model.
 EMF comes with a point-and-
click wizard for creating genmodels
from an ecore model, making this
task trivial.

Generating Code
 Code is generated from the gen-
erator model (see Figure 6). The code
generator reads the ecore model,
the generator models, and a set of
code definition templates defined in
a template language called JET. The

 FIG 1: PROCESS OVERVIEW

 FIG 2: OPTIONS FOR CREATING ECORE MODELS

 FIG 3: UML MODEL FOR THE MUSIC LIBRARY

www.SYS-CON.com/WebSphere O C T O B E R 2 0 0 448

JET template is not likely to be modi-
fied by most of the EMF users; how-
ever, a short description of what they
are and the role they play may help
to understand the EMF framework.
 JET is based on the JavaServer
Pages (JSP) syntax (in fact, the JET
implementation was based on the
Tomcat implementation). A JET tem-
plate contains a template for files

containing Java implementation files.
The framework “expands” the various
JET files to generate the Java source
files.

What Is Generated?
 EMF can create three plugins (see
Figure 7):
• emf.model: The emf.model con-

tains an implementation that is
closely aligned with the ecore
model. The emf.model plugin con-
tains an object-oriented API that
allows programmers to manipulate
and persist objects based on the

business model.
• emf.edit: The emf.edit plugin con-

tains user-interface independent edi-
tor code. The implementation in this
plugin contains adapters that shield
the model code from the presenta-
tion code. The code also provides a
sophisticated command framework
with unlimited command stacks to
support undo and redo.

• emf.editor: The emf.editor plugin
contains the presentation code for
the editor.

 The three plugins make up a com-
plete implementation of an editor,
allowing users to create and maintain
music libraries.
 The implementation is based
on best practices for developing
Eclipse plugins. It uses a set of design
patterns to ensure separation and
decoupling of concerns. The imple-
mentation is highly efficient and its
functionality supported far beyond
what is typically implemented (e.g.,
drag-and-drop, unlimited undo/
redo, etc).

The Final Result
 After generating the code, we can
now test or deploy our plugins. The
new editor allows us to edit files with
a particular extension. The extension
name is determined by the code gen-
eration options. In our case, we’ve
used the “.music” extension. The new
editor recognizes files with a “.music”
extension. EMF has also included a
wizard for creating new music files
(see Figure 8).
 Figure 8 shows the running editor.
It presents the object structure as a
tree. The attribute and associations
are modified in a property editor.
This is not the only option for pre-
sentation. The genmodel allows us to
set up various other preferences for
how to create the model.
 To play around with all the mod-
els and the generated plugins, you
may download the ecore model,
the genmodel and the generated
plugins from www.inferdata.com/
downloads/emf/emf_intro.

Uses of EMF
 The most dominant use of EMF is
inside IBM, where it is used for creat-
ing editors for their flagship develop-
ment tool WSAD.
 At InferData, we have been using
EMF for the following tasks:
• Create persistence implementa-

tion for various in-house products
• Create standalone products for the

Eclipse platform
• Create quick prototypes to validate

complex business models

A
P

P
L
IC

A
T
IO

N
 S

E
R

V
E

R

 FIG 5: ECORE AND GENMODEL

 FIG 6: CODE GENERATION FRAMEWORK

 FIG 4: ECORE EDITOR

www.SYS-CON.com/WebSphereO C T O B E R 2 0 0 4 49

 The use of EMF to create editors
is obvious and its benefits are imme-
diate. The last use, to prototype busi-
ness models, may not be as obvious.
 Often, in building large-scale
business systems the validation
of the business requirements may
yield great payback. It is very expen-
sive to find errors late in develop-
ment. Building formal UML models
helps avoid this problem, but there
are a limited number of domain
experts available that can read
the UML models. It has been our
experience, that a quick prototype
of a business model may widen
the understanding of complex business models even though the final target
implementation may be on a completely different technology.

Conclusion
 In this article, I’ve provided a high-level overview of EMF. We’ve looked
at its anatomy and the artifacts it produces.
 EMF is a powerful framework for creating Eclipse plugins. Its frame-
work is inspired by the MDA standard emerging from OMG. Even though
one may argue that EMF doesn’t meet the MDA standard one hundred
percent, it is highly practical and provides significant benefit to Eclipse
developers.
 The main benefits are:
• Significant improvement of productivity.
• High-quality implementation based on best practices for developing

Eclipse plugins.
• Excellent separation of concern. Business models remain technology

independent; code generation is performed for all that can be code
generated and kept separate from the manually developed code.

LISTING 1
<?xml version=”1.0” encoding=”UTF-8”?>
<ecore:EPackage xmi:version=”2.0”
 xmlns:xmi=”http://www.omg.org/XMI”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-
instance”
 xmlns:ecore=”http://www.eclipse.org/emf/2002/
Ecore”
 name=”music”
 nsURI=”http://www.inferdata.com/emf/music”
 nsPrefix=”music”>
 <eClassifiers
 xsi:type=”ecore:EClass”
 name=”MusicLibrary”>
 <eStructuralFeatures
 xsi:type=”ecore:EAttribute”
 name=”name”
 lowerBound=”1”
 eType=”ecore:EDataTypehttp://www.eclipse.
org/emf/2002/Ecore#//EString”/>
 <eStructuralFeatures
 xsi:type=”ecore:EReference”
 name=”artists” upperBound=”-1”
 eType=”#//Artist”
containment=”true”/>
 </eClassifiers>
 <eClassifiers
 xsi:type=”ecore:EClass”
 name=”Artist”>
 <eStructuralFeatures
 xsi:type=”ecore:EAttribute”
 name=”name” lowerBound=”1”
 eType=”ecore:EDataType http://www.eclipse.
org/emf/2002/Ecore#//EString”/>
 <eStructuralFeatures
 xsi:type=”ecore:EAttribute”
 name=”notes”
 eType=”ecore:EDataType http://www.eclipse.
org/emf/2002/Ecore#//EString”/>
 <eStructuralFeatures
 xsi:type=”ecore:EReference”
 name=”works” upperBound=”-1”
 eType=”#//Work”
 containment=”true”/>
 </eClassifiers>
 <eClassifiers
 xsi:type=”ecore:EClass”
 name=”Work”>
 <eStructuralFeatures
 xsi:type=”ecore:EAttribute”
 name=”name”
 lowerBound=”1”
 eType=”ecore:EDataType http://www.eclipse.
org/emf/2002/Ecore#//EString”/>
 <eStructuralFeatures
 xsi:type=”ecore:EAttribute”
 name=”whenMade”
 lowerBound=”1”
 eType=”ecore:EDataType http://www.eclipse.
org/emf/2002/Ecore#//EString”/>
 <eStructuralFeatures
 xsi:type=”ecore:EAttribute”
 name=”notes”
 eType=”ecore:EDataType http://www.eclipse.
org/emf/2002/Ecore#//EString”/>
 <eStructuralFeatures
 xsi:type=”ecore:EAttribute”
 name=”mediaType”
 lowerBound=”1”
 eType=”#//MediaType”/>
 </eClassifiers>
 <eClassifiers
 xsi:type=”ecore:EEnum”
 name=”MediaType”>
 <eLiterals name=”CD”/>
 <eLiterals name=”LP” value=”1”/>
 <eLiterals name=”TAPE” value=”2”/>
 <eLiterals name=”MP3” value=”3”/>
 </eClassifiers>
</ecore:EPackage> FIG 8: THE MUSIC EDITOR

 FIG 7: PLUG-IN DEPENDENCY GRAPH

