

Commercial Component Creation (EJB™2.0)

Enterprise JavaBeans™ Components Technology

Based Components

Technical White Paper

Date: April 5, 2001

Authors:

Faiz Arni, InferData Corporation

Andrew Pharoah, ComponentSource

www.inferdata.com

www.componentsource.com
Email: farni@inferdata.com

Email: authors@componentsource.com

InferData US Headquarters Other Locations
8200 North MoPac Expy.
Ste. 200
Austin, TX 78759
USA

Toll Free: (888)211-3421
Tel: (512) 306-8225
Fax: (512) 306-8781

 821 Bourbon Court
Mountain View, CA 94041
USA

Toll Free: (888)211-3421
Tel: (512) 656-8360
Fax: (512) 306-8781

Copyright © 1996-2000 ComponentSource™

Contents

Introduction
Commercial Overview

Component Overview
Identifying A Component Candidate
Analyze Application Functionality
Component Reusability
Expert Functionality
Component Architectures
Client -Side Components
Server-Side Components
Exceptions
Component Types
Visual Components
Non-Visual Components
Implementation Language Issues
Java™ Technology

Enterprise JavaBeans™ Components (EJB™)
Introduction
Why use EJB?
Transaction Processing Monitors
CORBA
Component Transaction Monitors
Architecture of Enterprise JavaBeans
Components
Basic EJB Concepts
Types of EJB
Creating Enterprise JavaBeans Components

 Remote Interface
 Home Interface
 Enterprise Bean Implementation
 Deployment Description
 Error Handling
 Threading

Design Considerations
Identify Component Scope
Choose Architecture
Prototype Interface
Session Beans
Stateless Session Beans
Stateful Session Beans
Entity Beans
Container Managed Persistence
Bean Managed Persistence
Roles in EJB
Bean Developer
Application Assembler
Application Deployer
Server Provider
Container Provider
Administrator
EJB Services
Transaction Services
Security Service
Naming Service
Persistence Service
Resource Management Service

Documenting Commercial EJB Components
Documentation Benefits
Reduction In Pre/Post Sales Support
The Confidence Factor
Typical Documentation
Online Documentation
Demonstrations
Evaluations
Sample Code
Readme Files
Pre-requisites
Dependencies
Compatibility
Component Testing
Component Licensing
The Common Licensing Problem
C-LIC - The Common Licensing Solution

Conclusion

Introduction

This white paper has been constructed to help component authors develop and enhance professional
software components for server applications and for delivery on the 'open market'. Information covered in the
document is based on our knowledge and expertise of those component authors who successfully have
established themselves in the component marketplace. The content is aimed at developers who wish to
create components based on Sun Microsystems® Enterprise JavaBeans™ (EJB™ 2.0) specification. In the
following chapter we discuss the business benefits of using components and identify the functionality
suitable for server-side component development in Java™ technology. Following this we detail the EJB
architecture and the environment in which these components can be used.

Commercial Overview

The market for Software Components is expected to grow to around $4.4 billion by 2002, $1.0 billion from
products and $3.4 billion from related services. (Source: PricewaterhouseCoopers)

Traditionally, server applications were built using proprietary transaction processing monitor (TP Monitor)
systems. This made it difficult to write portable, enterprise-class software. With the introduction of Enterprise
JavaBeans Components, server-side, enterprise software applications may now be created as a collection of
software components or enterprise beans . These EJB based applications may now be deployed on any
EJB-compliant application servers such as Sun-Netscape Alliance iPlanet™, IBM® WebSphere™, BEA™
Weblogic® or IONA iPortal Application Server™. Increasingly enterprise application developers are
employing component-based software development techniques, which enable them to reduce their time to
market and improve their software quality. Software authors who are experts in a specific horizontal or
vertical market sector are now "componentizing" their applications to meet the increasing demand for
sophisticated business components. As such this represents a huge opportunity for you to unlock hidden
revenues from years of research and development.

Why is buying a software component a good idea? Everybody, software developers included, admit that
they do something, (write a program or subroutine), better second time around. This is the essence of a
"component", built and continuously improved by an expert or organization and encapsulating business logic
or technical functionality. By buying a component a developer can add functionality to their application
without sacrificing quality. Indeed quality should improve, as the component will have gone through several
development iterations and include feedback from 1,000's of users.

What type of components will people buy? Initially software components were used to provide technical
functionality, such as SMTP for email or enhanced user interfaces. Developers are now requesting
sophisticated components that solve real business issues from component authors, such as Credit Card
Authenticating components for E-Business applications. To find out what is in demand visit our Component
Request Center: www.componentsource.com/business or look at the Case Studies of Authors who have
already entered the 'open market' for components.

What is helping make this happen now? The open Enterprise JavaBeans specification from Sun
Microsystems is a component model for building server-side, enterprise class applications. EJB allows the
component authors to focus on creating portable and reusable components rather than spending time on
building complex proprietary "application framework environments" that "lock-in" users. The EJB
specification requires the application servers to provide a host of services that the EJB-based components
may depend upon. Since the services are specified using Java technology interfaces, the bean
implementation is not tied to any application server vendor's implementation of those services. The EJB
specification also enables the application server vendors to provide a robust, scalable, secure and

transactional environment to host the EJBs. EJBs are implemented using the Java Programming Language
as specified by Sun Microsystems. The Java programming language is a rich, portable, and secure language
that supports automatic garbage collection, reflection and dynamic method dispatch.

To find out about the EJB architecture and how to design, implement and deploy EJB components - read the
remainder of this white paper.

Component Overview

Identifying A Component Candidate
How do I identify a component candidate? - Understanding how a component works and
how functionality differs from applications is important when identifying a suitable component
candidate. In this section we investigate existing applications for potential functionality,
consider component reusability and finally discuss the importance of business knowledge
and how this applies to the components you write.

a) Analyze Application Functionality
Developers should look at the functions encapsulated in their own applications and others to
assess the commercial viability of componentizing particular functions. Each component
advertises one or more business interfaces. The users (or clients) of the component interact
with it only through these interfaces. The clients are completely decoupled from the
implementation of the component. The component implementation may be changed or
upgraded without affecting the clients. One of the main characteristics of a component is
that the business logic is separate from the data that a component manipulates. However,
this does not apply to single parameter data that is passed to methods of the interface. For
example, in EJB, a special kind of beans, known as Entity beans, are used to model
persistent data. However the underlying data may come from any JDBC compliant data
elements - the client has only an object view of the data !

b) Component Reusability
An important factor worth considering is a products commercial viability. Market demand
determines whether a component is commercially viable or should be used only within your
own organization. Typical examples include components that are directly linked to hardware
such as monitoring components for alarm systems. Unless the components can be sold
separately from the hardware the ability to sell the product online is greatly reduced.

Components that can be integrated without any consultation will succeed in what's known as
the 'Open Market'. This market allows components to be distributed without any consultation
or tailoring service. All information regarding the product is supplied in online documentation
such as demonstrations, evaluations, help files and sample code.

For more information on the open market browse to:
http://www.componentsource.com/Build/OpenMarket.asp

c) Expert Functionality
Expertise and knowledge are the two areas you should focus on when writing a software
component. If you are developing a component from scratch then consider the components
already on the market and assess whether you could offer a different or superior solution.
Where possible write components that are related to your core business area. It's likely that
these functions will be more valuable than peripheral functionality designed to provide a

basic solution. For example, if your core business provides insurance underwriting services
then concentrate on these core functions first as opposed to peripheral components such as
a basic user interface components for data presentation in a grid or as a chart of graph.

Component Architectures
Where are components installed? - Components, unlike applications are deployed in either a
client or sever environment. However, this can depend on the component containing a
graphical user interface (GUI) A GUI or visual component would be of little use in an
environment where servers run without screens. Apart from this, component functionality
can run on client or server machines. However, this may be dependent on the usage of the
component and other aspects defined below.

a) Client-Side Components
Client -side components can be implemented in a variety of ways depending on the
functionality required. Their overall characteristic is that all logic is encapsulated and run on
the client as opposed to a server that may serve many clients. Another factor unique to
client-side components is licensing. Depending on complexity, client-side components may
be restricted with user run-time licenses. Due to the nature of a client component it is
possible that unique licenses are required per client machine. Client-side components can
be implemented in the form of Presentation, Technical and Business components. Examples
of each are detailed in the topic 'Component Types'.

b) Server-Side Components
Server-side components are relatively new to the component market. Benefits enable the
developer to provide solutions that run on a per server basis. These components serve
many clients simultaneously without significant performance loss. Server-side components
can also be upgraded efficiently removing the complexities of updating potentially thousands
of desktop machines. Component logic is often run on powerful servers as opposed to a
desktop machine. This makes the server-side component an excellent candidate for
systems that require efficient throughput and performance.

c) Exceptions
Where possible you should design components in either a client or server architecture.
However, there are a few components that are exceptions to the two definitions above.
Typical examples include components that have a user interface that run in an client
environment and are tightly coupled to components that run in a server environment e.g.
stock/trading systems. These architectures exist for security reasons only i.e. the server
component will only communicate with a specific client component and the client component
will only communicate to a specific server component.

Component Types
What types of component are there? - Two main types of component exist - visual and non-
visual components. Both types can encapsulate either technical or business knowledge. The
differences between the two are dependent on functionality. For example if the component
provides only a benefit to the developer e.g. a TCP/IP communication library then the
component is categorized as technical. Business components provide a benefit to the
developer and end-user by encapsulating business knowledge. Typical examples include
address formatting and credit card validation components. Both visual and non-visual
components have their benefits and in the following topics we will look at different examples
of both in a client and server based environment.

a) Visual Components
Visual components present a pre-designed presentation interface to the user. Examples

include data grids and charting components. These components are traditionally
implemented as JavaBeans™ Components, which is a Java technology-based component
model. Visual components appear graphically in a component toolbox in Integrated
Development Environments (IDE) such as IBM's VisualAge for Java™ and webGAIN
VisualCafé™. This allows the developer to select and physically draw the component onto a
form and then manipulate properties via a design interface known as a property sheet.
Another characteristic is that component functionality is run on the desktop machine as
opposed to a powerful server. Because of this visual components are relatively lightweight
on processing power. Visual components also provide developer licensing built in. This
prevents users from copying the component into a development environment and using it at
design-time. Developer licenses come as a file that must be on the users system in order for
the component to work correctly.

Client and Server Based Examples - The Java Abstract Windowing Toolkit (AWT) and the
Java Swing component set for building graphical user interfaces are examples of JavaBeans
component implementations for client development. Server-side visual components such as
Java applets reside on the web server and are automatically downloaded along with the web
page that includes them. The downloaded applets execute within a "sandbox" on the client,
thus protecting the client's environment from any malicious applet.

b) Non-Visual Components
Non-visual components do not provide a pre-designed presentation interface to the user.
These components are implemented as Enterprise JavaBeans Components or non-visual
JavaBeans Components. For the EJB -based components, the functionality of the
components is exposed only through the business interfaces, known as remote interfaces.
For JavaBeans Components, the functionality is exposed primarily through properties of the
beans. A non-visual JavaBean Component may still be manipulated and configured in a
graphical development environment. The JavaBean Components specification also specifies
a helper class, known as a BeanInfo class, that may be implemented to expose the
functionality of a non-visual JavaBean Component. Using BeanInfo, the bean developer may
expose the properties, methods and events of a component. Non-visual components are
adaptable and can be run in either client or server environments. This allows the
functionality to be plugged into any n-tier architecture providing the application developer
with a universal solution. Non-visual components, typically designed to run in a server
environment, allow many clients to access functionality simultaneously without loss in
performance. Typical examples include online housekeeping functions that require the
dedicated processing power of a server.

Client and Server Based Example - ShoppingCart EJB, which is one the components of
BEA WebLogic Commerce Server™ , is an example of a 'non-visual' component that
executes in a EJB server environment. This component encapsulates the functionality of an
online shopping cart used by e-businesses. In the past, most online stores had their own
proprietary implementations of the shopping carts. The ShoppingCart EJB enables them use
a well-tested, well-designed component in a "plug-and-play" fashion - they simply need to
integrate and configure the EJB in their applications. The DataAccess beans are an example
of components that execute both in a client and a server environment. These components
hide all the details of accessing data from commercial database systems. The users of these
components build their applications based on the component interface without coupling their
code to the actual database specific code. The feature enables the clients to access any
database system without having to modify or recompile their code.

Implementation Language Issues
Enterprise JavaBeans Components may only be implemented using the Java programming

language. The EJB standard specifies all the services provided to server-side side
components in terms of Java technology interfaces and classes. Since the EJBs depend
upon these services, they must be implemented using Java technology.

The Java 2 Platform Enterprise Edition™ (J2EE™) from Sun Microsystems specifies the
support for using RMI/IIOP as the protocol of communication between clients and enterprise
beans. Using RMI/IIOP enables the clients to use programming languages such as C++, C,
Cobol and Java technology. RMI refers to Java's Remote Method Invocation. IIOP refers to
the Internet Inter-Orb Protocol. IIOP, specified by the Object Management Group (OMG), is
the communication protocol for CORBA™ (Common Object Request Broker Architecture)
based systems. CORBA enables the interoperability between systems written in different
programming languages. In CORBA, you can have a client implemented using C, C++ or
COBOL that may invoke remote methods on a server object implemented in, say, Java. This
interoperability is possible because of IIOP.

Java™ Technology
Java technology has emerged as a very popular language for building E-business
applications. Java technology comes with a rich set of pre-built classes or components. One
of the strong features of Java technology is that it is portable. You can write your application
once and run it on any machine that supports a Java Virtual Machine™ (JVM™). Java
technology enables the development of concurrent, multi-threaded programs. Classes may
be loaded dynamically, even from across the Internet, in the run-time system. The language
itself is very secure, in that, you cannot 'forge pointers' to arbitrary areas in memory. The
memory management is done automatically, thus freeing the developer from the mundane
and often error-prone tasks of explicit memory management. With the introduction of EJB,
Java Servlet Technology and JavaServer Pages™ (JSP), Java technology has become an
important language for building server applications.

Enterprise JavaBeans™ Components

Introduction
Enterprise JavaBeans Components is a specification of the server-side component model for building and
deploying enterprise-class applications. The enterprise application developer may build his/her application as
a set of interconnected enterprise beans and deploy such an application in an EJB-compliant application
server. The specification also mandates that EJB -compliant application servers provide a set of enterprise
services through well-defined Java interfaces. The standard also specifies certain interfaces that all
developer-written components should implement in order for them to be deployed in an EJB-compliant
application server. In other words, the EJB server promises a set of services and, in return, expects the
components (enterprise beans) to implement certain interfaces so the server may manage these
components. The EJB standard enables the enterprise developer to focus on the actual business logic of the
application, encoded in the beans, and the EJB server is responsible for all the enterprise services such as
Concurrency, Persistence, Transaction Management, Security Management, Naming Services, Object
Distribution and Resource Management. EJB based applications are secure, robust, scalable, portable and
transactional. To understand the problem space EJB addresses, let us consider the motivations for using this
technology.

Why use Enterprise JavaBeans Components?

To understand the need for EJB, it is useful to understand the relative merits of TP Monitors and CORBA

systems. Here we present the strengths and weakness of both these architectures.

Transaction Processing Monitors

Traditionally enterprise-class systems were implemented using systems generally known as
Transaction Processing Monitors or TP Monitors. Large scale enterprise applications such
as banking, insurance and airline reservation systems are built using TP monitors. Some of
the popular TP Monitors are IBM's CICS® and BEA Tuxedo®. TP Monitors were a natural
choice for enterprise applications because they handled all the database transactions
efficiently and in a manner where the enterprise developer did not have to explicitly write
code to manage transactions.

TP Monitors are designed to handle large amounts of workloads and manage concurrent
access to enterprise application resources. TP Monitors also handle the security
management, database access and the network connectivity for the enterprise applications.
In other words, TP Monitors provide these services so that an application programmer may
focus on implementing the business logic of the application.

In a way, you may think of the TP monitors as an Operating System for business
applications. When you use a normal Operating System, you expect a host for services such
as virtual memory management, file system management etc. from the system, you do not
code for those services in your normal applications. Similarly, enterprise applications may
expect to find services pertaining to Transaction, Security, Concurrency, Resource
Management etc. from the TP Monitors.

Given that TP Monitors do so much for an enterprise programmer, why not use them? Why
worry about EJB? For all their strengths, typical TP monitors suffer from two major
drawbacks. First, most TP monitors do not have a component model. The services are
offered, typically, as functions which leads to monolithic applications as opposed to
component based applications. It is very hard to replace one service implementation with
another. For example, for an e-commerce application, you might want to have the flexibility
to replace the credit card processing object with a superior implementation. Lack of an
object model prevents you from doing that easily. It also makes it hard for you to implement
'objects' that reside on the server but are dedicated to specific clients and execute
programs, on the server, on behalf of their 'owner' clients. A typical example of this kind of
application is a Shopping cart or a Mobile Smart Agent.

The second, and more serious, problem with typical TP Monitors is the lack of portability of
enterprise applications implemented using them. Enterprise applications implemented on TP
Monitors are usually tied to a proprietary API and model. It is usually a large effort to port an
enterprise application from TP Monitor system to some other vendor's TP Monitor. The
problem arises because there is no standard for TP Monitors. Each TP Monitor may
implement all the necessary services that an application might require and use, but since
vendor exposes the services in a proprietary way, the enterprise application becomes non-
portable.

CORBA™

At this point it might be appropriate to present the other technology that attempts to address
the shortcomings of the TP Monitors. And that technology is CORBA and is specified by the
OMG and is a industry standard. CORBA provides a rich component model for the server-
side programming and also specifies a host of services called CORBAServices such as OTS
(Object Transaction Services) and SecurityServices. Server applications written in CORBA

are for the most part portable across multiple implementations of ORBS (Object Request
Brokers).

Component Transaction Monitors

Enterprise JavaBeans Components essentially combine the strengths of traditional TP
Monitors and CORBA. In other words, using EJB, you get all the benefits of TP Monitors and
the portability and component model of CORBA. EJB servers belong to a class of systems
commonly known as Component Transaction Monitors or CTM. Using an EJB -compliant
server, an developer may build enterprise-class applications rapidly, focusing purely on the
business and application logic. All the infrastructure services are now the responsibility of
the server and are provided automatically to the application. The developer can configure
these services declaratively - the configuration is specified using XML. The enterprise
application is implemented as a set of EJB components, with well defined business
interfaces, that are deployed on an EJB server. The developer is no longer tied to any one
implementation of the application server and may simply deploy her application on any EJB-
compliant application server, such as iPlanet, WebLogic, WebSphere or iPortal, without
even recompiling the application! The EJB container-specific deployment tool generates the
appropriate proxy objects to provide the enterprise services and ties them with the
developer-implemented components during the application deployment.

In summary, you would use the EJB component architecture if you want to build portable,
component-based, scalable, secure, transactional and robust enterprise applications rapidly.
You would also use EJBs if you want to focus primarily on the design and implementation of
the business logic and want the application server to handle all the system services.

Architecture of Enterprise JavaBeans Components

Enterprise JavaBeans Components are components that are deployed on EJB-compliant application
servers. EJB components are contained within special objects known as containers. The container is
responsible for providing the system-level enterprise services to the enterprise beans.

Basic EJB Concepts
The EJB components reside on the server. Their functionality is exposed to their clients and
callers through well-defined interfaces. The callers may be in the same process space as
the server objects or they could be in another process and even another machine. The
callers communicate with the server object through the use of a Client-Proxy object. This
Client -Proxy object has the same interface as the EJB component, but for each method
invocation by the caller on the Client-Proxy, the proxy simply sends (or delegates) a
corresponding request to the real bean implementing the service on the server. This
involves serializing the caller's request and sending it, perhaps using network connections,
to the server. On the server, another object, called a Skeleton Object, intercepts this request
and re-creates the original method call from the serialized input it receives and eventually
invokes the relevant method on the enterprise bean. The Skeleton object then obtains the
return value from the enterprise bean, upon the completion of the bean method invocation,
and sends it back to the Client-Proxy in a serialized form. Finally the Client-Proxy de-
serializes the return value and constructs the values of the appropriate types and returns
them to the original caller. The presence of the Client-Proxy and the Skeleton is completely
transparent to the caller - the caller thinks it is communicating with the enterprise bean. On
the server, placed between the Skeleton object and the enterprise bean, is another object
called the Server-Proxy or the EJBObject. Every call from the Skeleton to the enterprise
bean is routed through the EJBObject, which checks for concurrent access, transactional
contexts and security contexts before allowing the methods on the enterprise bean to be

invoked. You may think of this object as some sort of a guard object for the bean.

In summary, the Client-Proxy object resides on the client and is the server object's proxy on
the client. The Client-Proxy is responsible for a) locating the target object (the server object
for which this Client-Proxy serves as a proxy), b) sending the request to the server, usually
in a serialized form, over the network and c) for retrieving the return values back from the
server and constructing the return value for the caller. The Skeleton object and the
EJBObject reside on the server along with the enterprise bean. The Skeleton is responsible
for a) receiving the request from the client, possibly from across the network, b) de-
serializing and constructing a call to the corresponding EJBObject and c) for obtaining the
return value from the call to the EJBObject and sending that value, in a serialized fashion,
possibly over the network, to the caller. The caller is invariably a Client -Proxy. The
EJBObject, after it receives the call from the Skeleton object, ensures that it is safe and legal
to carry out that operation. If the operation is legal, subject to security, transaction and
concurrency policies, the EJBObject calls the corresponding method on the enterprise bean
and returns any return value it gets back to the Skeleton object. And finally, the enterprise
bean simply executes the business method that it had been programmed to do so by the
bean developer.

As you may notice, the bean developer simply provides the bean implementation that
concerns itself only with business logic. All the objects that provide the enterprise services
are generated by the system. The following table summarizes the various objects and their
roles.

Object Created by Resides
on Service

ClientProxy EJB Compiler Client Marshals client requests to server and
unmarshals return values

Skeleton EJB Compiler Server
Unmarshals ClientProxy's request and invokes
the corresponding method on the EJBObject
and marshals the return value back to the
ClientProxy.

EJBObject EJB Compiler Server
Intercepts all method invocations on the
enterprise bean and provides the EJB services.
Delegates call to the enterprise bean.

Enterprise
Bean Bean Developer Server

Implements the real business logic of the
application for the methods advertised in the
remote interface.

Types of Enterprise JavaBeans Components

Enterprise JavaBeans are divided into three broad categories:

• Session Beans
• Entity Beans
• Message-Driven Beans

Session beans are used to model process or task-oriented aspects of your application. It is
useful to think of a session bean as a client's representative on the server. Session beans

provide a session-oriented view of the server to the client. Entity beans are used to model
data, typically persistent data, of an enterprise application. Enterprise beans correspond to
rows in relational database tables or to objects in object-oriented database systems. Both
Session beans and Entity beans are synchronous – i.e. the caller, upon a method invocation
on these types of beans, blocks until the method execution completes. Message-driven
beans, on the other hand, enable the development of asynchronous applications. A
Message-driven bean is basically a message consumer, registered as a Message Listener
on a Message Queue. Whenever messages are delivered on the message queue, the
corresponding Message-driven beans are notified by the EJB container. We shall explore all
three kind of beans in greater detail later in this document.

Creating Enterprise JavaBeans Components

 To define an EJB, the bean developer has to define the:

1. Remote interface (Entity and Session Beans only)
2. Home interface (Entity and Session Beans only)
3. Bean implementation
4. Deployment description information

Remote Interface
This interface exposes the business functionality of the enterprise bean in a
declarative way. That is, the interface lists what functionality this bean would
provide and not how it would provide it. From a client programmer's
perspective, the interface lists all the business methods of the enterprise
bean that calling applications may invoke when using this bean.
Components for the open market are defined as 'Black Box'. This means
that all functionality is encapsulated and therefore no implementation code
is available to the user except the Remote interface. The EJB compiler
generates the Server-Proxy (EJBObject) and the Client-Proxy classes that
implement this interface. Message-driven beans do not have a remote
interface.

Home Interface
This interface exposes the life cycle methods of the enterprise bean. This
interface contains methods to create, remove or find beans on the server.
The clients of the EJB use this interface to manage the life-cycle of the
enterprise beans on the server. You may also think of this as the factory
interface for the EJB components. The EJB Compiler generates a pair of
classes, one for the client-side and the other for the server-side, that
implement this interface. The server-side implementation of the home object
has the code to instantiate and initialize the enterprise bean, associate it
with an EJBObject and finally return to the client a corresponding instance,
in a serialized manner, of the Client -Proxy class. The client-side
implementation of this interface acts as a client-proxy for the server-side
implementation of this class. When an enterprise bean is deployed, the EJB
server instantiates the server-side home object and registers this object in a
Naming Context (Name Server) under a name specified in the deployment
descriptor. Message-driven beans do not have a home interface.

Enterprise Bean Implementation
This class contains the real implementation of the EJB component. The EJB

implementation class has to implement:

1. All the methods specified in the remote interface.
2. Methods corresponding to methods specified in the home interface.
3. Callback methods specified by the EJB specification so that the EJB

container may manage and interact with the enterprise bean by
invoking these methods. All session beans must implement the
interface, javax.ejb.SessionBean. And all entity beans must
implement the interface, javax.ejb.EntityBean.

Deployment Descriptors
Every EJB needs a deployment description document to aid the application
server in deploying the EJB and in generating the proxy classes for the
home and remote interfaces. The deployment description is specified using
XML. Sun Microsystems has defined a Document Type Definition (DTD) for
EJB deployment descriptors. In the deployment descriptor, the bean
developer associates the Remote Interface, the Home Interface and the
Bean Implementation. The name, under which the server-side home object
is registered on a Name Server, is also specified here. The deployment
descriptor is also used to declaratively specify the transaction and security
attributes of various methods of the remote and home interfaces. The
deployment descriptor file is used to define Principals denoting users,
groups of users or devices. The deployment descriptor is also used to
specify the Method Permissions. – Principals are associated with beans
methods defining an implicit access control policy. The deployment
descriptor is also used to specify environmental variables, resource
management information, enterprise bean type information, database
connection pools and database mapping information for Entity beans. If the
Entity bean contains any dependent data (i.e. data from other tables), then
such relationships also need to be specified in the deployment descriptor.
The bean developer must provide reasonable default values for various
attributes in the Deployment Descriptor file - the deployer may override
some of these during deployment of the bean. For Message-driven beans,
the message queue, on which the bean is registered as a message listener, is
also specified in the deployment descriptor file .

Error Handling
Handling errors in a component is not the same as handling application
errors. Firstly, you need to consider that any error not handled in a EJB will
be sent back to the client that called the method. For that reason, you must
ensure that the information the client receives is meaningful. A client
interface should be totally unaware that a component may be running a
process. Therefore any error that occurs should be handled by the client
and interpreted in such a way that any error message displayed is
generated by the client and is in context with the process that has failed.
Below are the main techniques for handling errors in EJB.

Handling Errors Internally - Handling errors within an EJB
is no different to handling errors in a standard application. If
a method unexpectedly generates an error then unless an
error handling routine is included, the calling application will
crash. To avoid this situation, intercept the error, assess its
severity and take corrective action, either by resuming to a

specific line of code or by throwing an appropriate
exception to the calling function.

Passing Errors Back to the Client - To return an error
back to the calling client you must throw a
RemoteException. Throwing a relevant RemoteException
will let a client know about the cause of the error. All EJB
clients must be prepared to deal with the possibility of
receiving a RemoteException.

Raising Errors from Error Handlers - The majority of
methods and properties you write will contain error handler
routines. Where an error handler receives an unexpected
error then returning a generic 'unexpected error' exception
will not help the client find a solution. A good practice is to
return the methods name that failed and the parameters
that were passed to it. This information can then be passed
back to the component author for investigation.

Handling Errors from Another Component - If your EJB
references a third party EJB then you must handle all errors
(known or unknown) that the secondary component may
generate. Developers using your component may have no
knowledge of the dependencies your component
references. Because of this, you must not raise these errors
to your client application.

Threading
The EJB architecture assumes responsibility for managing concurrency. Do
not try to explicitly manage threads or thread synchronization as this may
interfere with the EJB server's thread management. Also, the EJB server is
free to use multiple JVMs and your explicit thread management may not
work correctly.

Design Considerations
How do I develop a software component? - Before writing a component you should analyze
the functionality and architecture first. In this section we discuss components functional
boundaries, assess where a component will physically run and how to implement an
extensible interface. Considering these elements will prevent the inclusion of unnecessary
functions and provide a focused solution for developers.

a) Identify Component Scope
It is important when designing a component to identify the functionality that should be
included and the functionality that is best incorporated into another component. A
component should allow a developer to integrate a precise solution as opposed to one that
provides features over and above a basic requirement. For example, designing a business
component that provides addressing services could include various functions such as
address duplication, post coding and address formatting. In this example the three functions
are mutually exclusive and should be implemented separately.

However, if the component was an address duplication component that incorporated
extended functionality e.g. off-line batch duplication then this functionality should be
included. It is possible to create one component that can be sold at three different levels. By

using the ComponentSource licensing technology (C-LIC), it is possible to block extended
functionality. This allows authors to publish one component but sell a separate standard,
professional and enterprise edition.

Defining component scope will help ensure a component does not become monolithic and
mimic an application without an interface. Unbundling functionality into separate
components will prevent the component from becoming over complex and difficult to
maintain. The advent of online purchasing and the removal of packaging and shipping costs
has meant there no longer is a need to bundle disparate functionality into one component or
to market several components in one suite. Removal of this traditional cost implication will
allow authors to publish highly focused discrete components and provide customers a wider
choice.

b) Choose Architecture
Choosing architecture will depend on the functionality the component will provide. As
discussed earlier in the chapter 'Component Overview' client components are often visual in
some respect such as grids, charting and toolbar components. However, non-visual
components may fall into this category if the functionality is 'lightweight' and does not
severely impact the processor, typical examples include file encryption and communication
components. If the component functionality can be used in a multi-user environment then
consider developing a scaleable server based component. This should be implemented
preferably as an Enterprise JavaBean Component for scalability and transaction handling.

Installing components in a server environment is less time consuming than having to install
a component on several client machines. The improved performance and upgradeability
benefit that server components offer is reflected in the price and provides component
authors with an opportunity to generate revenues based on a server architecture. Server
based components will provide the backbone to future Application Service Providers (ASP)
and consequently developing server components now, will position you for the future growth
in this market.

c) Prototype Interface
Prototyping a component interface can be a useful exercise and will help determine the
complexity of integrating the component into an application. Component integration should
be a relatively quick process. If the interface has hundreds of public properties, methods and
events then it's probably too complex and will confuse users and generate support issues. A
technique, which can help prevent this problem, is to write the help file before
implementation. This will help you detail a functional specification and pinpoint any areas
that could be consolidated or improved upon.

Session Beans
Session beans can be thought of as extensions of client's application on the server. Session
beans represent transient activities. Session beans should be used to model the functional
part of an enterprise application. Session beans are not sharable by multiple clients, i.e.
each client has a reference to its own, private session bean on the server. Session beans
are divided in to two categories:

• Stateless Session Beans
• Stateful Session Beans

Stateless Session Beans
Stateless Session beans do not maintain any state (at least none that the
client can depend on) between multiple remote method invocations by a

client on the same Client -Proxy of the Session bean. The effect of using
these beans is the same as invoking a remote function on a server. Use this
kind of a bean for executing some process or program on the server where
the duration of the method execution constitutes a complete session from
the client's perspective. Example of these kinds of beans are those that
perform some atomic action on behalf of a client, e.g. an AccountManager
bean that has a business method, say createAccount, to create a new
Account bean on the server.

Stateful Session Beans
Stateful Session beans maintain state across multiple remote method
invocations by a client on the same Client-Proxy of the session bean. The
client, through a Client-Proxy, has a reference to session bean on the
server. Every method invocation by the client on the Client-Proxy is routed
to the same session bean instance on the server. The session starts when
the client obtains the Client -Proxy referencing a server-side session object
and ends when the client explicitly removes the Client-Proxy. Use this kind
of a session bean where you want to carry out a long conversation with the
server and want the server object to save the conversational state. An
example of this kind of a bean is an online shopping cart, where a client
might use the remote methods to add, remove or modify the products in the
shopping cart.

Entity Beans
Entity beans represent the data part of an enterprise application. Entity beans are usually
mapped either to records of a relational database system or to objects of an object oriented
database. Entity beans are transactional, in that changes to their state typically occur within
the context of a transaction. An instance of an Entity bean, unlike an instance of a session
bean, may be referenced by multiple clients. Concurrent access is allowed, subject to the
transactional state of the bean and the transaction isolation levels in force at the time of the
concurrent method invocations on the bean. The container is responsible for ensuring that
the data in the bean instance and the corresponding data on the database are synchronized.
All entity beans require the presence of an object, called the Primary Key object, that
represents the primary key fields of the table that this entity bean represents. The home
interface of an Entity bean is required to contain the standard finder method,
findByPrimaryKey. This method locates an Entity bean given a primary key object. Bean
developers may also specify other finder methods, known as custom finders, which locate
Entity bean(s) based on some other criteria. Entity beans are divided into two categories:

• Container Managed Persistence
• Bean Managed Persistence

Container Managed Persistence
For Container Managed Persistence (CMP) Entity beans, the container is
responsible for reading the data from the database to populate a bean (this
may entail a SQL query execution by the container) and for writing the
contents of the bean to the database (this may entail a SQL insert or update
to be executed by the container). The bean developer may build a CMP
entity bean without having to write a single line of database code in the
bean implementation. However, the instance variables of the CMP entity
bean that map to specific columns on a table have to be specified in the
deployment descriptor, along with the table and database names. If the
CMP bean contains any fields that map to records from other tables (also

known as dependent data), then such mapping also have to be explicitly
specified in the deployment descriptor. This mapping information is crucial
for the container to generate the necessary database code to manage
persistence. If the home interface contains some custom finder methods,
then the query execution code for such finders has to be specified in the
deployment descriptor. These queries are specified using the query
language EJBQL. CMP beans are easier to develop because the developer
does not have to deal with database programming. However, CMP beans
are not viable when you want to map entity beans onto complex joins or
proprietary storage devices.

Bean Managed Persistence
For Bean Managed Persistence (BMP) Entity beans, the bean developer is
responsible for writing the database code for reading, writing, modifying and
deleting the records from the database in order to map the bean to some
persistent data. Unlike CMP, the mapping of the bean to persistent data is
coded into the bean's implementation. The database access methods are
implemented as callbacks and the container is still responsible for invoking
these methods on the bean at appropriate times during the life-time of the
bean to ensure data synchronization. BMP beans are relatively difficult to
develop and harder to maintain, yet they are extremely flexible.

Message-Driven Beans (MDB)

Message-driven beans enable the development of asynchronous applications. A MDB bean
is registered as a message recipient or message consumer on a message queue. The name
of the queue is specified in the deployment descriptor. When message senders send
messages on this message queue, the EJB container notifies the MDB by invoking the call-
back method, onMessage . This method is passed a Message parameter encapsulating the
message. The bean developer must implement the necessary business logic in this method.
The message senders can be any kind of applications (i.e. they do not have to be EJB
clients). A MDB bean is also anonymous in that no client (or bean) may hold a reference to a
MDB bean – only the EJB container may access the bean directly. A MDB bean has neither
a remote interface nor a home interface.

Roles in EJB

The EJB specification defines a number of roles in the application development and
deployment process. They are:

• Bean Developers (Component Authors)
• Application Assemblers
• Application Deployers
• Server Providers
• Container Providers
• Administrators

Bean Developer (Component Author)
This role is played by the component developer who specifies the Remote
Interface, Home Interface, Bean implementation class and the deployment
description. The Bean developer compiles all the source files and packages
them in a JAR (Archive) file. The Bean developer then runs a vendor

supplied tool, commonly referred to EJB Compiler, to generate the client
and server proxy objects for the remote and home interfaces. Finally
another JAR file is created containing all the compiled class files for
developer written source files and EJB Compiler generated source files.
EJBs are packaged in such JAR files.

Application Assembler
This role is played by the application writers who re-use or buy EJB-based
components and assemble them to create applications.

Application Deployer
An Application Deployer is typically an IT manager who deploys, after
modifying the deployment description file, the application on a EJB -
compliant application server. The deployer is responsible for setting the
proper Access Control Lists (ACL), database mappings for CMP Entity
Beans and the name of the home object.

Server Provider
This role is played by vendors who implement the application servers based
on the EJB specification. e.g. Sun-Netscape Alliance iPlanet™, IBM®
WebSphere™, BEA™ Weblogic® or IONA iPortal Application Server™.

Container Provider
This role is played by the writers of containers that hold he EJB
components. The components themselves reside within a server. At this
point, since the interface between the container and the server is not well
specified, this role would be played by the Server Provider.

Administrator
This role is played by the EJB server administrator who would be
responsible for managing the database connections, Naming Servers and
performance monitoring.

EJB Services

 The EJB application servers provide a host of services for the enterprise beans. The most
important of which are the transaction and security services. The rest of the services are
listed below.

• Transaction Services
• Security Services
• Naming Service
• Persistence
• Resource Management

Transaction Service
Transactions in EJB can be divided into two broad categories: Bean-
Managed and Container-Managed. The EJB architecture requires that the
EJB container support the interface,
javax.transaction.UserTransaction, defined in the Java
Transactions API (JTA). Bean-Managed Transaction beans use the

UserTransaction to explicitly demarcate transactions. Transaction
services may also be used without having to code against the
UserTransaction interface, i.e. they may be container-managed. For
container-managed transactions, the developer may specify the transaction
attributes, listed in the table below, in the deployment descriptor. Container-
managed transaction attributes may be specified at the method scope1. The
EJB system also passes the transaction context implicitly with method calls
on enterprise beans. For example, when a caller is in a transactional context
and invokes a method on a bean, the caller's transaction context is passed
implicitly to the bean's method. The table below lists all the transaction
attributes on methods that are supported for container-managed
transactions. The table also describes how the transaction context
propagation may be controlled.

Attribute Description

Not Supported When a caller invokes a method, the caller's transaction, if any, is
suspended and is resumed after the method call.

Required
If the caller is in a transactional context, the called bean becomes part of
the caller's transactional context. If the caller is not in a transactional
context, the container starts a new transaction for the duration of the
method.

Supports
If the caller is in a transactional context, the called bean becomes part of
the caller's transactional context. If the caller is not in a transactional
context, the container does not start a new transaction.

RequiresNew

If the caller is in a transactional context, the caller's transaction is
suspended and a new transaction is created for the duration of this
method execution. If the caller is not in a transactional context, the
container creates a new transaction is created for the duration of this
method execution.

Mandatory
The caller must be in a transactional context before invoking a method on
the bean. The called bean becomes part of the caller's transactional
context. If the caller is not in a transactional context, the container throws
a javax.transaction.TransactionRequired exception.

Never
If the caller is in a transactional context, the container throws a
java.rmi.RemoteException. If the caller is not in a transactional
context, the container does not start a new transaction.

Security Service
The EJB security uses the javax.security.Principal class for identifying callers.
When a client identifies itself to the server, then, for every remote method that the client
invokes on the server object, the client's security context is passed implicitly to the server
object. The Server-Proxy uses this security context information to authorize the invocation of
the method on the enterprise bean. The authorization policies are specified in the
deployment descriptor files. Even for inter-bean communication, the security context is
passed implicitly, like a hidden argument. The security context is also available to the bean

1 The bean-managed transaction attribute is specified at a bean scope (not method). All the methods of such
beans use the bean-managed transaction attribute.

at run time, thus enabling the bean developer to implement object level security.

Naming Service
EJB servers use a naming service to register their home objects under names specified in
the deployment descriptor. These naming services may be accessed using the Java Naming
and Directory Interface (JNDI) API. The JNDI API has methods to register, un-register and
lookup objects by name. Using JNDI enables the Naming Service provider to use any
implementation as long as the API is JNDI.

Persistence Services
EJB architecture provides persistence support in the following two ways:

1. For CMP Entity beans, the container reads the data from the database into the bean
before the first time any method is executed on the bean in a transaction. The
container automatically writes out the bean to the database at the end of successful
completion of a transaction, say when a commit occurs.

2. For BMP, the container calls the appropriate callback methods (ejbLoad and
ejbStore) on the enterprise bean. The bean developer would have written the code
in these two methods to read the data from the database and update the data into
the database respectively.

As you may notice, the bean developer is no longer responsible for synchronizing the bean
with the underlying database, the container handles it automatically.

Resource Management Services
EJB architecture provides resource management services in a number of ways. Database
connections are typically pooled, as are the threads. This increases the performance
noticeably. EJB servers also keep unattached enterprise bean instances in a pool and reuse
these instead of invoking the memory manager. EJB servers achieve scalability by using a
limited number of bean instances to serve a large number of clients. They do it by using a
technique known as activation/passivation. When the system needs a bean to service a
client and if the system does not have any free beans in the pool, the server 'passivates' a
bean by writing out its state on to a secondary storage and reusing that beans memory. If at
a later time, the passivated bean receives a request from the client, the server 'activates' it
using an available bean instance.

Documenting Commercial EJB Components

Documentation Benefits
a) Reduction in Pre/Post Sales Support
Documentation for components sold in the open market is particular important as 'face to
face' interaction does not take place between author and customer. Providing a
comprehensive set of documentation will ensure that pre/post sales support is kept to a
minimum. Providing pre sales documentation i.e. a thorough component specification
prevents many of the refund situations common in traditional 'box product' channels.

Traditional channels sell product by providing marketing information but not the finer detail
covered in help files and other technical documentation. Providing information such as help
files and evaluations enables customers to make an 'informed' purchase decision.

Documenting and publishing known issues such as Frequently Asked Questions (FAQ's) on
a regular basis will also help reduce technical support after the sale.

b) The Confidence Factor
Components sold on the open market may be 'Black Box' i.e. the source code is hidden.
Because of this, trust is extremely important between customer and author. Therefore,
provision of detailed product information such as evaluations, help files and white papers is
essential for building confidence in potential customers.

Typical Documentation
What documentation should I provide? - The following section provides a detailed insight
into the different types of documentation that should be provided when selling components
in a commercial market. For examples of presenting online documentation in a concise and
professional style browse our top selling products at: http://www.componentsource.com/java

a) Online Documentation (HTML, HLP and PDF Files)
HTML is probably the best format of documentation you can provide and can be used for
displaying information in text and graphical format. Typical examples include product
overviews with screen shots and/or related diagrams. Customer can view HTML instantly as
opposed to other document formats that must be downloaded first. Writing a help file is
relatively easy and can be achieved using help authoring tools. More information on these
tools can be found on our Web site under “Help Authoring Tools”.

Portable Data Files (PDF) are documents that can be viewed on IBM compatible or MAC
platforms. The PDF file enables the creation of technical documentation in a 'book' format.
Therefore, converting a published manual into an electronic form is probably the most
efficient way to achieve this. The drawback with PDF files is the requirement of a proprietary
viewer that must be downloaded first. To write a PDF file you will need to download the
Adobe® PDF Writer.

b) Demonstrations
Developing a product demonstration can prove a valuable asset in the documentation you
provide customers. Exposing component functions will help users understand the benefits of
the product as a component-based solution. Demonstrations are compiled applications
assembled with the component. They are not like evaluations that allow developers to use
the component in a development environment. More information on evaluations is covered
in the following topic.

The objective of a demonstration is to educate users on the functionality incorporated inside
the component. The interface should demonstrate the main functions in a format that is
understandable for all customers. Because of this it's important to remove industry jargon
and acronyms that may confuse users. For data bound components, providing the option of
entering a Data Source could be of benefit. This allows users to connect to internal data
sources in their own organization and apply meaningful data in context with the component.

Demonstrations often reference dependencies and therefore testing the demonstration on a
clean machine is extremely important. Clean systems contain freshly installed operating
systems removing the potential hazards of previously loaded software. If your demonstration
references any dependencies then you must create an installation kit. Sometimes it's
beneficial to include the demonstrations within the evaluation kit and thus remove the need
to write and maintain two separate kits.

Finally, the quality of a demonstration is directly correlated to the quality of the final retail

product. Where possible, design your demonstration in-line with an accepted standard. This
helps build a perception of quality and trust with customers - remember demonstrations can
make or break a sale.

c) Evaluations
Component authors recognize evaluations will help secure a product sale. Once a customer
is happy with a specification they often trial the component to check the component will
actually provide the functionality they are looking for. Customers do not doubt component
based development, but may have concerns with an 'independent' solution, because of this
component evaluations are essential. Unlike applications, component evaluations add value
and play a significant role in the pre sales process.

Writing an evaluation will require consideration into security. Producing a component that
displays a reminder screen or setting time limits hidden in cryptic keys within the registry are
just some of the techniques currently used. Setting a 5-10 day trial period for technical
components and 10-30 days for complex business components is recommended. This gives
the customer enough time to evaluate the product and make a decision whether to buy.

An ideal evaluation is the full retail restricted by a security feature detailed above. This
prevents users having to download the evaluation and retail component separately.
ComponentSource has made available a license protection facility called C-LIC primarily
designed to protect evaluations that can be unlocked into full retail products. C-LIC displays
a reminder screen requesting the user to enter a license key provided when the full retail is
purchased.

d) Sample Code
Sample code is particularly useful when developers need to prototype and assess
component functionality. A good technique is to provide the sample code used in the
component demonstration. If possible, this should be provided in a basic, intermediate and
advanced version. This will allow the developer to grasp how the demonstration was
developed and it's stages of advancement throughout its development cycle.

Sample code usually is the final step that customers evaluate before making a decision
whether to buy. Therefore its important to maintain a good perception by commenting all
code and explaining exactly what happens and why. The quality of sample code will directly
correlate to the quality of your final product. Because of this professionally written sample
code using correct naming conventions, coding structures and error handling is essential. If
the sample code is well structured then it can be reused in actual projects. This makes the
whole process of integration far less complex and useful for developer's who need to rapidly
assemble a component-based solution.

e) Readme Files
In this topic we list the various information that a Readme file should contain. Most
installation scripts provide users with an opportunity to view a Readme file for last minute
changes or errata information once installation is complete. These files should be written in
a universal file format i.e. a text (TXT) file or HTML file. This prevents users having to own
proprietary applications such as Microsoft Word to view the file. The following list provides
an insight into the various information supplied in component Readme files.

Products Changes - this section is extremely important and should note all
the functional changes that have been made in comparison to previous
versions and any changes to documentation, installation etc.

Bug Fixing - bugs resolved from previous versions should be fully
documented. Include the component version that contained the bug and a
description of what has changed. This is particularly important if the
component's interface has been changed.

System Requirements - Although compatibility information is supplied in
our own sales documentation its worth reiterating this information in your
Readme file. This should include information such as operating system for
deployment, safety levels, threading standards etc.

Definitions of Component Filenames - Listing the filenames of all
components (including dependencies) is particularly useful if the user is
attempting to identify a problem. Although help and dependency files
include this information, Readme files are often browsed as well.

Detailed Installation Notes - This should include information on how to de-
install and update previous versions. A troubleshooting section should also
be included defining solutions to common installation problems.

Notes on Sample Projects - Document any assumptions, known issues
etc. If possible, describe each of the projects and the functions they expose.
In addition to this defining a project's complexity i.e. basic, intermediate or
advanced can also be of help.

Distribution Information - Particularly useful when a user creates an
installation kit. Your component may reference many other dependencies,
therefore detailing this information will help the developer create a tailored
installation kit and prevent many of the 'missing dependency' issues when
testing.

Known Issues - You must document all known issues. If possible, also
explain why the problem arises. If you do not provide this information then
it's likely that unnecessary technical support issues will arise. Documenting
known issues will demonstrate that you care and are focused on providing a
future solution.

f) Pre-requisites
Pre-requisites provides the customer with details on required software, product size,
required memory, service packs where appropriate and publicly available drivers such as
the reference implementations of JNDI drivers. It is worth including the minimum and
recommended size when defining memory and hard disk allocation.

Component Testing
How do I test a component? - Thorough testing is paramount to the success of a component
being excepted in the open market. All evaluations and sample code should be tested in
addition to the full retail product for functionality, installation and de-installation. An issue that
should be approached with care is the dependencies referenced by your component. Most
installation tools require the selection of the original component's project file. This allows the

wizard to analyze all references selected at the time the component was compiled. Absence
of dependent files referenced by other dependent files is probably the most common
installation issue. This is why testing on a clean machine, on all operating systems and all
development environments is imperative. If this rigorous testing process is not followed then
the likelihood of damaging a customers system is high. Therefore, to create a clean machine
you must:

Format Hard Disk - If you only reinstall the operating system then static
files that do not require registration may have already been installed.
Therefore, without formatting the disk there is no guarantee that the
installation will work on all machines.

Install Operating System - Make a note of any service packs applied as
this must be included in the component's documentation i.e. the Readme
file

Install Development Environment - Again, document any service pack
installations. Always select the standard installation otherwise certain files
may be missing causing erroneous errors when you test. This may include
the development language for design time testing and the application server
for deployment testing.

Test installation - Although we test the product installation thoroughly we
recommend you also test the product to your best ability. This will ensure
the swift progress of the component through our QA system.

Once the above steps are complete you can image the disk allowing you to re-clean your
environment in minutes. Image applications take a snapshot of your clean system, with
operating system and development environment installed. This prevents the long cycle of re-
installing everything before testing can re-commence. A good practice is to allocate a hard
disk per operating system per development environment. As several disks can be installed
in one machine, imaging an environment provides an economical and effective solution.

Component Licensing
How do I license my component? - Unlike application licensing, few licensing utilities exist
for component licensing. Those that currently exist often operate a 'two-phase unlock'
process which requires manual intervention to generate the retail unlock key. However, this
form of licensing does not suit 'mass market' adoption. The availability of the C-LIC
(Common Licensing) component enables authors to provide a 'Try-Before-You-Buy'
licensing solution.

a) The Common Licensing Problem
Components sold on the open market are typically 'Black Box' architecture. This means that
all functionality is encapsulated and cannot be adapted by the developer except through the
public interface. Because of this, providing an evaluation that allows the developer to 'road
test' a component is important when securing a sale. Nowadays, customers expect one
download that runs in evaluation mode for a set number of days. Once this evaluation has
expired, functionality is disabled until a license key is purchased and entered, unlocking the
component into a full retail version. Often the best form of protection is to use a
reminder/nag screen that launches each time the calling application runs the component.
This prevents users without a license from releasing an application into a commercial
environment.

b) C-LIC - The Common Licensing Solution
C-LIC is the ComponentSource license technology used to adapt a full retail product into an
evaluation. However, please note the current version does not support copy protection. C-
LIC can be integrated into a majority of languages that support the creation of software
components. Its method of working is similar to that used in application software. C-LIC was
made available to enable component authors to create a fully or part functioning evaluation
protected by a 'nag' screen reminding users that the component is unlicensed. The nag
screen allows customers to browse to the relevant product page and purchase the license
key used to unlock the product into the full retail component. The license key is provided by
ComponentSource and is generated by our own proprietary encryption.

C-LIC can also protect different levels of functionality. For example if your standard version
has 10 functions and your professional version 20 functions then the purchase of a standard
license will unlock 10 functions only - the other 10 functions will remain in evaluation mode.
Please Note: C-LIC V1.1 does not provide "copy protection".

Conclusion
Build components and enter the component market now!

Many different companies of various sizes from around the world are creating new EJB based components.

• BEA Systems - eCommerce and eBusiness EJBs
• Diamelle - eCommerce EJBs
• Eon Technologies - Financial & Banking EJBs
• Xenosys Corporation - Internet Investment, Billing and Banking EJBs

Customer demand for components is currently outstripping supply - as a result an opportunity exists for
experts to create components and enter the "open market" for components.

If you would like to find more information on building components visit:

http://www.componentsource.com/build/

http://www.componentsource.com/business/

If you have any feedback on this white paper or questions about creating commercial software components
email us on: authors@componentsource.com

ComponentSource

Copyright © 1996-2000 ComponentSource™

