J2EE and Web Services Overview

./

InferData

8200 NorthMoPac Expy. Suite 250
Austin, Texas 78759
Phone: (512) 306-8225

http://www.inferdata.com

version 3.3

A1l Rights Reserved

No part of this material may be
reproduced in any form without
explicit written permission from
Inferbata Corporation.

Inferpata [T

J2EE Architecture 1
Issues in Enterprise Application Development. 2
Why J2EE . . . o 3
What IS J2EE? 4
Java 2 Platform, Enterprise Edition 5
(O 1= | 1= 6
Web Tier. . 7
EIB Tier . o o 8
J2EE Applications. 9
J2EE Packaging 10
Packagingthe EJB Tier e e 11
Packagingthe Web Tier 12
Packaging and Deploying J2EE Applications. 13
Overview of J2EE Technologies 14
Enterprise JavaBeans Components 15
TYPES Of EJBS . . o o 16
SEIVIEES . . 17
JavaServer PagesTM (JSP). 18
Java Database Connectivity JDBCTM) 19
Java Transaction APl (JTA) e e e 20
Java Transaction Services (JTS).o 21
Java Naming Directory Interface (JNDI). 22
Java Interface Definition Language (JavaIDL) 23
RMI-IOP . . e 24
RMI-IOP . L e 25
Java Messaging Service (IMS) 26
JavaMail APl 27
J2EE ROIES .. 28
Why Enterprise JavaBeans (EJB)?. 29
Why EJB. . o 30
What are Enterprise JavaBeans ?o 31
Enterprise JavaBeans. 32
ATypical EJB Example. 33
Component Transaction Monitors (CTM) 34
Component Transaction Monitor (CTM)............ 35
EJB Fundamentals 36
EJB Artifacts 37
EJB Deployment Descriptor 38
EJB Containers. 39
Why Containers 2. 40
With Containers. 41
Different Kinds Of EJBS e 42
EIB TYPeS . .o 43
Local and Remote Enterprise JavaBeans. 44
Which EJB typesshould luse?. 45
Proxy Pattern 46

1

Inferpata [T

BasSIC PrOXYo 47
BasSiC PrOXY . ..o 48
PersiSteNCe ProXY. . . .ot 49
PersiStenCe ProXY.o 50
Transaction ProXy.ot 51
Transaction ProxXy.o 52
SECUNLY PrOXY. . . oot 53
SECUNLY PrOXY. . .o 54
Concurrency Proxy. 55
CONCUITENCY PrOXY. . . . oot e 56
Virtual Object Proxy. e 57
Virtual Object Proxy. 58
Communication ProXy. 59
Communication Proxy (Contd.) i, 60
Communication ProxXy. 61
Enterprise JavaBeans Workflow. L, 62
Description of the Example 63
EJB Development Process (Step 1)t 64
EJB Development Process (Step 2)o 65
EJB Development Process (Step 2) ...t 66
EJB Development Process (Step 3)t 67
EJB Development Process (Step 3)o 68
EJB Development Process (Step 3)......... o 69
EJB Application Assembly Process. i 70
EJB Application Assembly Process. i 71
EJB Application Deployment Process 72
EJB Application Deployment Process 73
EJB Application Deployment Process i, 74
EJB Application Deployment Process 75
EJB Application Deployment Process 76
How do Enterprise JavaBeans Work? 77
EJB EXECULION. . . . o 78
EJB EXECULION.o 79
EJB EXECULION.o 80
EJB EXECULION. . . . o 81
EJB EXECULION.o 82
EJB EXECULION.o 83
EJB EXECULION.o 84
EJB EXECULION.o 85
EJB EXECULION.o e 86
EJB EXECULION.o 87
EJB EXECULION.o 88
EJB EXECULION. . . .o 89
Some QUESHIONS 90
Overview of Java Message Service. 91
Enterprise Messaging System. 92

z

Inferpata [T

Message-Oriented Middleware 93
Messaging APl 94
Java Message Service (JMS) 95
Benefits of USINgIMS 96
JMS Messaging Styles 97
Point-To-Point 98
Publish-and-Subscribe 99
Message-Driven Beans 101
Message-driven Beans 102
Association of MDB With JMS Destination 103
ClientViewof an MDB e 104
ClientViewofan MDB i 105
Message-driven Bean Class 106
onMessage() Method 107
XML OVEIVIEW. . . o o e 109
What Is XML? 110
Basic Pieces of an XML Document. i, 111
ASimple XMLExample 112
XML Syntax — Well-Formed XML. i 113
XML Syntax —Valid XML 114
DT D . e 115
XML Parsers 116
Overview of Web ServicesConcepts it 117
Whatare Web Services 118
Categories of Web Services. 119
Web Service Roles and Interactions. 120
Key technologies for web services. 121
SOAP . L 122
WS DL . 123
UD DL, .o 124
Web Service Roles and Technologies 125
J2ZEE and Web Services 127
Implement Web Service withEJB 128
WebLogic and EJB-Based Web Service 129
EJB Provider Example 131
Bean Class for PrimeNumGen 132
Bean Class for PrimeNumGen 133
Developing EJB Web Service using servicegen in WebLogic.......... 134
ANT Script to Create EJB-based Web Service 135
Dynamic EJB Web Service Client - JAX-RPC 136
Servlet as Service Requester. i 139

3

Inferpata [T

4

InferData Limited |

J2EE Architecture

Copyright © 1Inferbata 2004 www.inferdata.com 1

InferData Limited |

Issues In Enterprise Application Development

Maintenance

Business/Application
Logic
Transactions
@

Integration
Portability
@
Communication

Copyright © Inferbata 2004 www.inferdata.com

InferData Limited |

Why J2EE?

¢ The Java 2, Enterprise Edition (J2EE) platform enables the development of
systems that are:
» Transactional (Even Distributed!!)
e Secure
» Persistence-aware
e Scalable
» Distributed
 Web-enabled
 Component-based
 Message oriented
 Portable
« Maintainable
» Extensible
* Inter-operable with legacy systems

Copyright © 1Inferbata 2004 www.inferdata.com 3

InferData Limited |

What i1s J2EE?

¢ J2EE is introduced to reduce the cost and complexity of developing n-tiered
enterprise applications.

¢ J2EE defines a complete platform that guarantees services in such areas as:
« Security
« Transaction Management
 Resource management
 Naming and directory
« Messaging
« Concurrency control
» Interoperability

Copyright © Inferbata 2004 www.inferdata.com 4

InferData Limited |

Java 2 Platform, Enterprise Edition

J2EE Architecture
Client Tier Middle Tier EIS Tier
Web Container EJB Container
— DB2
Senvlet |f S JavaBean
) i :
= =)| | rw o] T
Intranet HTTP HTML |§ g |
L|:
M ? JavaBean Legacy Legacy
—_ Applications Popiet T hiel S
m | I—
o
= Intranet EBXVL JavaBean 2 ‘
L8 | WebServices H%% | VDB e
Applications 7S @
@ LDAP Server
Platform Services
Intranet
EJB JDBC JVIS JTS JAXP JCA
JNDI JTA JAAS Mail SOAP I

¢ Component based architecture for scalable, transactional, secure applications

Copyright © 1Inferbata 2004 www.inferdata.com 5

InferData Limited I

Client Tier

¢ Allows the user to interact and enables presentation of information to the user

& Supports variety of client types:

* Web Clients — communicate with the web tier using HTTP or HTTPS protocol
- Web Browsers
- Java Applets
- Java Applications
- Non-Java Clients

¢ EJB Client — communicates directly with the EJB tier using RMI/IIOP

Copyright © Inferbata 2004 www.inferdata.com

6

InferData Limited |

Web Tier

¢ Web tier holds Web Applications

¢ A Web Application is a collection of HTML/XML documents, web components,
and other resources in either a directory structure or archived format known as a
Web ARchive (WAR) file.

¢ Web Components refer to servlets and JSP pages

¢ A Web Container is a runtime environment for Web Applications

A Web Container provides Web Components with a naming context and life
cycle management. Some may provide more

Copyright © 1Inferbata 2004 www.inferdata.com 7

InferData Limited I

EJB Tier

o EJB tier is where EJB container resides
¢ EJB components are deployed into EJB container
¢ EJB components model application specific business logic

¢ EJB container provides following services to its components:
« Security
« Transaction management
« Resource management
 Naming and directory
« Concurrency control
« Interoperability

Copyright © Inferbata 2004 www.inferdata.com 8

InferData Limited |

J2EE Applications

¢ A J2EE application is a collection of software components that are engineered to
be distributed across multiple tiers of an N-tier system.

¢ J2EE applications may play the role of a client or a server depending on which
tier they are deployed.

& J2EE applications are not required to be distributed, but they should be
engineered so that they may be deployed on a distributed system.

Copyright © 1Inferbata 2004 www.inferdata.com)

InferData Limited |

J2EE Packaging

¢ A J2EE application, packaged in an Enterprise Archive (EAR file), consists of:
* One or more J2EE modules
- EJB packaged in JAR files
- Web components (JSP, Servlet, HTML etc.) packaged in WAR files

¢ One J2EE application deployment descriptor - application.xml
« application.xml lists all the J2EE modules

¢ Each module consists of one or more J2EE components
« An EJB JAR may contain:
- One or more EJB components
- A deployment descriptor - ejb-jar.xml
« A WAR may contain:
- Multiple Servlets, JSP, HTML WAR file
- A deployment descriptor - web.xml

Copyright © Inferbata 2004 www.inferdata.com 10

InferData Limited |

Copyright © 1Inferbata 2004

Packaging the EJB Tier

www . inferdata.com

Vendor Specific
Deployment
Descriptor

Generated
stubs,
skeletons,
etc.

Deployed
EJB jar file

ace R

InferData Limited |

Packaging the Web Tier

Copyright © 1Inferbata 2004 www.inferdata.com 12

InferData Limited |

Packaging and Deploying J2EE Applications

application.xml
\(Applicatinn Deployment Descriptor)

l l WAR file EAR file
— > (nterprise
| l EJB Jar file

chive File)
¢ The J2EE standard also specifies a deployment descriptor for deploying client
applications.

Copyright © 1Inferbata 2004 www.inferdata.com 13

InferData Limited |

Overview of J2EE Technologies

& J2EE architecture is based on the following Java technologies:
« Component Technologies: EJB, servlets, JSP
« Service Technologies: Java Database Connectivity (JDBC), Java Transaction API

(JTA) /Java Transaction Services (JTS), Java Naming Directory Interface (JNDI),
connectors

« Communication Technologies: Java IDL, RMI-IIOP, Java Messaging Service
(IMS), JavaMail API

Copyright © Inferbata 2004 www.inferdata.com 14

InferData Limited |

Enterprise JavaBeans Components

¢ EJB architecture — A server-side component model for the development and
deployment of enterprise applications.

¢ Enterprise applications — Modeled as a collection of components (or enterprise
beans) in which each component is a reusable software unit that implements a
specific part of the business functionality and has a well-specified interface.

¢ EJB — Deployed on EJB servers and are hosted within containers. EJB depend on
the container for certain services that can be declaratively customized at
deployment time.

Copyright © 1Inferbata 2004 www.inferdata.com 15

InferData Limited |

Types of EJBs

¢ There are three types of EJBs:

« Session beans — Model task or process oriented aspects of a business
application

» Entity beans — Model persistent enterprise data

* Message beans — Model asynchronous consuming of messages

¢ Components developed using EJB architecture are scalable, transactional, and
concurrency safe.

Copyright © Inferbata 2004 www.inferdata.com 16

InferData Limited |

Servlets

¢ Web components of a J2EE application that extend the functionality of a Web
server. In J2EE applications, servlets are hosted by the Web container.

¢ Receive an HTTP request from a client and dynamically generate a response
either in HTML or XML and send this response back to the client.

¢ May access enterprise resources such as databases or EJB in the EJB server.

¢ Maintain session information on behalf of the clients accessing them and may
also interact with other servlets.

Copyright © 1Inferbata 2004 www.inferdata.com 17

InferData Limited |

JavaServer Pages™ (JSP)

¢ Enable the dynamic creation of Web pages. JSPs are also hosted by the Web
container.

¢ Contain HTML or XML tags to format the Web document and Java technology
code to generate the dynamic content. The Java technology code is executed
each time the JSP is accessed.

¢ Use JavaBeans components to perform complex operations or to access EJB.

¢ The Web containers, hosting the JSP, typically compile the JSP into a servlet.

Copyright © Inferbata 2004 www.inferdata.com 18

InferData Limited |

Java Database Connectivity (JDBC'™)

¢ The J2EE platform uses JDBC to access relational databases. JDBC contains
classes and interfaces for:
» Loading and configuring a database driver provided by database vendors
« Connecting and authenticating a database server using URLs
» Executing Standard Query Language (SQL) queries and updates, including
compiled queries and stored procedures
» Navigating query results in cursor based structures

Copyright © 1Inferbata 2004 www.inferdata.com 19

InferData Limited |

Java Transaction API (JTA)

¢ Enables applications and application servers to access transactions in an
implementation independent manner

& Specifies standard interfaces between a transaction manager and the modules
involved in a distributed transaction:
* Application
» Application server
« Manager that controls access to the shared resources affected by the
transaction

Copyright © Inferbata 2004 www.inferdata.com 20

InferData Limited |

Java Transaction Services (JTS)

¢ The JTS specifies the implementation of a transaction manager that supports JTA
and implements the Java mapping of the OMG Object Transaction Services
(OT9).

¢ AJTS transaction manager provides the services required to support demarcated

transactions, resource management, synchronization, and transaction context
propagation using IIOP.

Copyright © 1Inferbata 2004 www.inferdata.com 21

Limited |
Java Naming Directory Interface (JNDI)

¢ Provides the naming and directory services in an implementation independent
manner

¢ Provides the enterprise applications with methods to:

» Associate attributes with objects
« Store the objects in name spaces
» Retrieve objects by name or other attributes

¢ Isindependent of the underlying service implementation

Copyright © Inferbata 2004 www.inferdata.com 22

Limited |
Java Interface Definition Language (Java IDL)

¢ Enables Java technology applications to invoke operations on remote objects
whose interfaces are defined using the OMG Interface Definition Language
(IDL).

¢ Java IDL contains:

 The IDL compiler idlj
« A Common Object Request Broker Architecture (CORBA) API
A CORBA-compliant Object Request Broker (ORB)

Copyright © 1Inferbata 2004 www.inferdata.com 23

InferData Limited |

RMI-1IOP

¢ RMI-IIOP is an implementation of the Java Remote Method Invocation (RMI)
protocol over the OMG Internet Inter-ORB Protocol (I10P).

¢ RMI-IIOP specifies remote interfaces for business objects in Java technology,
which can be converted to IDL.

& For remote interfaces defined using RMI, RMI-IIOP provides interoperability with
CORBA objects implemented in any other language.

Copyright © Inferbata 2004 www.inferdata.com 24

InferData Limited |

RMI-1IOP

¢ The J2EE platform provides a RMI interface compiler, rmic, that generates:

« Client and server stubs that work with any CORBA compliant ORB
« An IDL file that is compatible with the RMI interfaces

Copyright © 1Inferbata 2004 www.inferdata.com 25

InferData Limited |

Java Messaging Service (JMS)

« JMS is an API for using enterprise messaging systems such as IBM MQSeries,
and so on.

« JMS messages contain well-defined information that describe specific
business actions.

 The JMS supports two messaging models
- point-to-point
- publish-subscribe

Copyright © Inferbata 2004 www.inferdata.com 26

InferData Limited |

JavaMail API

¢ The JavaMail API:

» Provides a set of abstract classes and interfaces that define the objects
comprising an electronic mail system

* Includes concrete implementations of commonly used Internet mail
protocols

¢ The classes:

« Support various mail system implementations
« Can be extended to provide new protocols and functionality

Copyright © 1Inferbata 2004 www.inferdata.com 27

InferData Limited |

J2EE Roles

Component Application Application Administrator
Author Assembler Deployer
Map:
ssemble and lin Persistense .
ShOpp'l ngCar't éom poTentsd fink gztt::rsitgul::;:s cl;:tf':lgsuorj;ces
Define security roles Queues “SIIOM ”
and privileges Generate app-server ecurity

Resources

specific proxies

1

| o

| . .

| r======9 Application
| Application _»E%

I T

e IETT I 0 AR B
5 |

-

iﬂ Deploy

CreditcCard _>i f == Application Server
— _]

Authorizer = -]
| = J 1

| E—
| E— - e e omm owm o

| —

Application Server

Copyright © Inferbata 2004 www.inferdata.com 28

InferData Limited |

Why Enterprise JavaBeans (EJB)?

This section covers topics that address:
¢ The reasons for using Enterprise JavaBeans (EJB)

¢ Component Transaction Monitors (CTM)

¢ What are EJBs ?

Copyright © 1Inferbata 2004 www.inferdata.com 29

InferData Limited |

Why EJB?

¢ Enterprise Java Beans enable the development of component-based, enterprise
applications where the execution environment provides the following services:
» Transactions (even distributed transactions!!)
« Security
» Persistence
 Resource management
- Objects (memory)
- Connections (Database, MOM, Legacy systems etc.)
- Threads
* Obiject distribution
« Concurrency

¢ The application developer is free to focus on the business application logic

¢ Portability

« Vendor independence from providers of:
- Application servers
- Database systems
- Message Oriented Middleware
- Authentication & Authorization systems

Copyright © Inferbata 2004 www.inferdata.com 30

Limited |
What are Enterprise JavaBeans ?

EJB Container
EJB Context
g‘ E Enterprise JavaBean
a a)
o o business_op(...)
7 - O N
£ : -
3 *
N
N <

¢ Enterprise JavaBeans (EJB) are server-side components that are hosted and
execute in the context of an EJB container

¢ Remote clients access the EJB using a proxy (aka remote reference)

¢ EJBis an implementation of a Component Transaction Monitor (CTM)

Copyright © Inferbata 2004 www.inferdata.com 31

InferData Limited I

Enterprise JavaBeans

¢ EJB is a standard server-side component model for Component Transaction
Monitors (CTM)

¢ EJB architecture enables the development and deployment of distributed,
object-oriented, enterprise-class applications

¢ EJB based applications are:
* Transactional
» Persistence-aware
e Secure
o Scalable

Copyright © Inferbata 2004 www.inferdata.com 32

InferData Limited |

A Typical EJB Example

Business Application Server

EJB Container
Legacy

h Customer Systems

(EJB)

Account Database
(EJB) Server

Customer

Account Manager

Account Client

~

Copyright © 1Inferbata 2004 www.inferdata.com 33

InferData Limited |

Component Transaction Monitors (CTM)

Transaction Distributed
Processing Component
Monitors Systems

Component

Transaction

Monitors

¢ Transaction Processing (TP) Monitors

* Robust and scalable transaction processing
» Typically lack a real component model
« CICS, Encina, Tuxedo

¢ Distributed component frameworks

» Developer responsible for managing concurrency, scalability, persistence etc.
« CORBA, DCOM

¢ Component Transaction Monitors combine the benefits of the above two
« MTS, EIB

Copyright © Inferbata 2004 www.inferdata.com 34

InferData Limited |

Component Transaction Monitor (CTM)

Security Object
Distribution

Concurrency Transaction

Resource Persistence
Management

¢ A CTM provides the infrastructure for:
« Transaction Management (even distributed !')
* Obiject Distribution
e Concurrency
» Security
» Persistence
 Resource Management

Copyright © 1Inferbata 2004 www.inferdata.com 35

InferData Limited |

EJB Fundamentals

This section covers the following topics:

Artifacts of an EJB component
Deployment Descriptor

Types of EJB

EJB Containers

Copyright © Inferbata 2004 www.inferdata.com

[ace IR

InferData Limited |

EJB Artifacts

¢ An EJB is a coarse-grained server-side Java object hosted in an EJB container

«interface»
[— — JComponent Interfacek — -
| I
| I
| «interface» |
EJB Component — — _I_ — -lHome Interface~ — — 11
| ||
| Bean Implementation : :
L — —> L

o Typically’, associated with each EJB component, we have the following:

 Component interface

- Declares all the business methods that users of this bean may invoke
« Home interface

- Declares all the life-cycle and factory methods
« Bean implementation class containing all the implementation code

- Needs to implement all the Component Interface methods

- Needs to "support"” the Home Interface methods

¢ Component and Home interfaces may be either Local or Remote
(* Message-Driven Beans are an exception)

Copyright © 1Inferbata 2004 www.inferdata.com 37

InferData Limited |

EJB Deployment Descriptor

¢ The deployment descriptor is an XML document that contains:

The declaration of an EJB

- Home interface

- Component interface

- Bean implementation class

Transaction attributes

Security policies

Persistence attributes

Concurrency attributes (Isolation)

Resource management attributes

- Size of connection and instance pools

External resource references

- DataSources

- Messaging Systems

Definitions of relationships among EJB components
Names of EJB home objects to be used to register in a INDI-based naming
service

¢ The standard name of this file is ejb-jar.xml

Copyright © Inferbata 2004 www.inferdata.com 38

EJB container vendor’s extensions are specified using additional files

InferData Limited |

EJB Containers

¢ Provides runtime support for EJB components

¢ Interpose between EJB components and services

« Transparently inject services that are specified and configured in the
deployment descriptor

¢ Must provide a Java™ technology compatible runtime environment
« Based on Java™ 2 Platform, Standard Edition, v1.3 (J2SE™)

¢ Must support all of the J2EE standard services
« Can be extended using connectors to external resources

¢ Provides federated view of underlying services
« Transaction management
» Life cycle management
« Naming services (JNDI)
* Resource pooling for database connections, objects
» Instantiate enterprise beans on behalf of the client
 Manage the enterprise bean storage
« Manage the security context

Copyright © 1Inferbata 2004 www.inferdata.com 39

InferData Limited |

Why Containers ?

Transaction
Code

Accounting

Persistence
Code

Transaction
Code

Persistence
Code

application

Payroll
Resource application

Mgmt Code

Security
Code

Resource
Mgmt Code

Security

Application 1 Code

Application 2

¢ Without containers, every enterprise application has to implement :
« The application logic
« Support code for transactions, security, persistence etc.

Copyright © Inferbata 2004 www.inferdata.com 40

InferData

Limited

With Containers

Accounting
application

~

ra

Payroll
application

_ / N /
Application 1 Application 2
Container Services
Resource || Transaction || Persistence Security

Mgmt Code Code Code Code

Containers provide a common substrate of services

Enterprise programmers can now concentrate on implementing the business

logic

The services are now reused across multiple applications

The services, implemented by the container, are typically developed by experts

in those areas

Copyright © 1Inferbata 2004

www . inferdata.com

41

InferData Limited I

Different Kinds of EJBs

Enterprise JavaBeans

Synchronous Asynchronous

Message-Driven

Entity Bean Session Bean

Bean (MDB)
I | I I | I
Container- Bean-
Managed Man_aged Stateless Stateful
Persistence Persistence
(CMP) (BMP)

Copyright © Inferbata 2004 www.inferdata.com 42

InferData Limited |

EJB Types

¢ EJBs fall into three broad categories
« Entity Beans

* Session Beans
* Message-Driven Beans (MDB)

¢ Entity Beans are used to model data objects or business concepts that
correspond to types (persistent) from the type model
* They fall in to two subcategories
- Container Managed Persistence (CMP)
- Bean Managed Persistence (BMP)

¢ Session Beans are used to model application services
* Used to model a set of use cases for an actor
 Methods correspond to use cases
* They are further divided into:
- Stateful Session Beans
- Stateless Session Beans

¢ Message-Driven Beans are used to process asynchronous messages sent by
messaging clients

Copyright © 1Inferbata 2004 www.inferdata.com 43

InferData Limited I

Local and Remote Enterprise JavaBeans

¢ Session and Entity beans can further be classified as:

* Remote
 Local

¢ A remote EJB can be accessed by:

 Remote callers

- l.e. clients that exist outside the EJB container containing the EJB
* Local clients

- l.e. Callers that co-exist in the same EJB container with the EJB

¢ All parameters and return values are returned by value during the method
invocation of methods on a remote EJB

 Even when the callers are in the same EJB Container !!
¢ Alocal EJB can only be accessed by local callers

¢ All parameters and return values are returned by reference during the method
invocation of methods on a local EJB

¢ Entity beans should normally be modelled as local objects

Copyright © Inferbata 2004 www.inferdata.com 44

Limited |
Which EJB types should | use?

Hotel Chain

Model to EJB Mapping = e

contactedHotel
Reservation system
Cancel a
\ reservation
Make a
reservation

ReseryationMaker
[1
Update a
reservation 0.1
st
Check In

Process no HotelManager I
Billin s‘em/
_]

RoomType
[1]

shows

T

CustomerMnager |

<<interface type>>

Add, amend
; ’ - HotelMgt
) rer;nove <<interface type>> =
otel, room,
customer, ... CustomerMgt
ReservationAdministrator
* *
* Reservation Hotel
Customer roomType name
dates
1D * 1
*
name
address
Customer
1 ID

User Access SessionBeans EntityBeans ‘
Interface Beans o

<
%@
Client Application Server v

0000
0000

Copyright © 1Inferbata 2004 www.inferdata.com 45

InferData Limited |

Proxy Pattern

The proxy design pattern is fundamental to the EJB framework. In this section, we
shall cover the following patterns:

» Basic Proxy

« Persistence Proxy

« Transaction Proxy

» Security Proxy

e Concurrency Proxy

* Virtual Object Proxy

« Communication Proxy

Copyright © Inferbata 2004 www.inferdata.com 46

InferData Limited |

Basic Proxy

¢ Problem:

 We want to decouple the user (client) of a service (method) from the class
and object implementing that service (method)

¢ Reasons:

« Security
* The class implementing the method might change in the future

¢ Description:
» Specify the service using an interface, e.g.
- Interface: Account
- Service method : float deposit(float amount);
» Build the user (client) code in terms of this interface
» Define a pair of classes that implement this interface
- One class that implements the logic, AccountImp]
- One class that delegates the work to the implemention object,
AccountProxy
e Atrun time:
* The user (client) uses an instance of the proxy class, AccountProxy
« The proxy uses an instance of the implementation class, AccountImp]l

Copyright © 1Inferbata 2004 www.inferdata.com 47

InferData Limited |

Basic Proxy

AccountClient <<interface>>

Account

void main (String[] args) e
{ float deposit(float amt)
AccountFactory factory;
factory = AccountFactory.getInstance()
Account ac = factory.getAccount ("faiz");
float bal = ac.deposit(50);
System.out.println ("The balance is "
+ bal) ;

AccountProxy > Accountimpl

Account target; . .
String id;

float deposit (float amt) float currentBal;

{ :
float bal; float deposit (float amt)
bal = target.deposit (amt) ; currentBal += amt;
return currentBal;
return bal; }

}

Copyright © Inferbata 2004 www.inferdata.com 48

InferData Limited I

Persistence Proxy

¢ Problem:

« The implementation object is persistent
- l.e. it represents data/record from a database system

» Itis possible that the state of the in-memory component may be different
from the corresponding state in the database
- Another application may have modified the data on the database system

¢ Reasons:

» Neither the client nor the component implementor should be responsible for
synchronizing the in-memory component with the data on the database
- Neither of them should be required to have the expertise in data access

¢ Description:

In the proxy, perform the following steps in the business method (deposit)
Take a lock on the corresponding record(s) in the database

Load the data from the database into the implementation object

1
2
3. Invoke the business method (deposit) on the implementation object
4. Store the data from the implementation object into the database

5

Release the record lock(s)

Copyright © 1Inferbata 2004 www.inferdata.com 49

InferData Limited |

Persistence Proxy

AccountClient <<interface>>
Account
void main(String[] args) ’
{ float deposit(float amt)
AccountFactory factory;

factory = AccountFactory.getInstance()
Account ac = factory.getAccount ("faiz");
float bal = ac.deposit(50);
System.out.println ("The balance is "

+ bal);

AccountProxy > Accountimpl

Account target; c q
String 1id;

float deposit (float amt) f}oat B

{

float bal;

—— lock record(target.id);
load from db(target) ;
bal =_£argezldeposit(amt); mary 200 }
store into db(target) ;

unlock record(target.id);

/
float deposit (float amt)

’
A
/

currentBal += amt;
return currentBal;

robin 300

ning 400

return bal;

Copyright © Inferbata 2004 www.inferdata.com 50

InferData Limited I

Transaction Proxy

¢ Problem:

» The service method of the component may need to be invoked in the context
of a transaction

« There may be multiple components each connected to their respective
transactional resources (databases, MOM etc.)
- Distributed transactions, two-phase commits etc.

¢ Reasons:
» Neither the client nor the component implementor should be responsible for
managing transactions
* Neither of them should be required to have the expertise in transaction
processing

¢ Description:
In the proxy, perform the following steps in the business method (deposit)
Start a transaction

1

2. Invoke the business method (deposit) on the implementation object
3. If the operation is succesful, commit the transaction

4. If the operation is unsuccesful, rollback the transaction

Copyright © 1Inferbata 2004 www.inferdata.com 51

InferData Limited |

Transaction Proxy

AccountClient <<interface>>
Account
void main(String[] args) >
{ float deposit(float amt)
AccountFactory factory;

factory = AccountFactory.getInstance ()
Account ac = factory.getAccount ("faiz");
float bal = ac.deposit (50) ;
System.out.println ("The balance is "

+ bal);

AccountProxy > Accountimpl

Account target; q .
String id;

float deposit (float amt) LERE BLLRARNTIALS

{

float bal;
TransactionManager tm = {

TransactionManager.getInstance() ;
tm.begin(); — — — — — -

try {
bal = target.deposit (amt) ;

I
I ,

Jeateh (Excep tion et l Transaction Manager
l

float deposit(float amt)

currentBal += amt;
return currentBal;

[e

}

tm.rollback(); — _

; throw ex; : —A void begin() ;

void rollback() ;
| void commit () ;

tm.commit () } — — — — — — — — 1
return bal;

Copyright © Inferbata 2004 www.inferdata.com 52

InferData Limited I

Security Proxy

¢ Problem:

Not all users of a component may have the permissions to invoke the
methods on the component

¢ Reasons:

Neither the client nor the component implementor should be responsible for
managing security

Neither of them should be required to have the expertise in security policy
enforcement

¢ Description:

1.
2.
3

5.

Copyright © 1Inferbata 2004 www.inferdata.com 53

In the proxy, perform the following steps in the business method (deposit)
Access the security manager where all the access rules are stored

Access the user’s identity (typically done using the current thread)

Verify with the security manager whether the user has the necessary
privileges to to invoke the business method

If the caller has the necessary privileges, invoke the business method
(deposit) on the implementation object

If the caller does not have the necessary privileges, throw an exception

InferData Limited |

Security Proxy

AccountClient <<interface>>
Account
void main(String[] args) -
{ float deposit(float amt)
AccountFactory factory;
factory = AccountFactory.getInstance()
Account ac = factory.getAccount ("faiz");
float bal = ac.deposit (50);
System.out.println("The balance is "
+ bal);
}
AccountProxy > Accountimpl
Account target; . .)
Security Manager String id;
float deposit (float amt) Sle BLLEECEL
{ |User | Component |Method |
. float deposit(float amt)
£loat bal; arni Account deposit {
SecurityManager sm =
R SecurityManager.getInstance() ; arni | Cart addItem cuirentBal +=t;m§;
User user = getCurrentUser(); shaw | cart addTtem } return currentBal;
if (!sm.doesUserHavePermission—|—)]shaw | Cart checkout
(user, "Account", "deposit"))
{

throw new SecurityException|() ;
bal = target.deposit (amt) ;
return bal;

Copyright © Inferbata 2004 www.inferdata.com 54

InferData Limited I

Concurrency Proxy

¢ Problem:
 We may have multiple callers accessing the same component concurrently
« The operations invoked may alter the state of the component
» If the component is not shielded from concurrent access, we may potentially
get inconsistent results

¢ Reasons:

* Neither the client nor the component implementor should be responsible for
managing concurrency

* Neither of them should be required to have the expertise in concurrent and
parallel programming
- These skills are not easily available !!

¢ Description:

* In the proxy, perform the following steps in the business method (deposit)
1. Take a semaphore on the object (i.e. lock the instance)

- InJava, you may use the keyword synchronize
2. Invoke the business method (deposit) on the implementation object

3. Release the semaphore

Copyright © 1Inferbata 2004 www.inferdata.com 55

InferData Limited |

Concurrency Proxy

AccountClient <<interface>>
Account
id main(Stringl[])
‘EOl e T 9E - float deposit(float amt)

AccountFactory factory;

factory = AccountFactory.getInstance ()
Account ac = factory.getAccount ("faiz");
float bal = ac.deposit (50) ;
System.out.println("The balance is "
+ bal);
}
) -
,/ 'z'
.~~~ AccountProxy:__ = Accountimpl
,l/ - \\‘
I3 N
Accoupt target; =’
‘Q\ 7 P String id;
float dei)‘s\s‘it(float amt) '\\- e LSRR
{ \\ \\\\\\\ = i
float bal; \ _ > float deposit (float amt)
B ,’ ’ﬁll
-7 2?”' currentBal += amt;
take-cbject lock(); // return currentBal;
semaphore }
bal = target.deposit (amt);
N\
release object lock();
return ba]:}\\
} !
|
U
-
-
kz

Copyright © Inferbata 2004 www.inferdata.com 56

InferData Limited |

Virtual Object Proxy

¢ Problem:
« We may want to support a very large number of components
« We may not have enough memory to hold all the components in memory

¢ Reasons:
» Neither the client nor the component implementor should be responsible for
managing resources
* Neither of them should be required to have the expertise in resource and
object pool management
- These skills are usually found in operating system developers - a rare (and
expensive) breed

¢ Description:
* In the proxy, keep a flag that indicates whether the implementation object is
In memory or on the secondary storage
« Perform the following steps in the business method (deposit)
1. If the object is not in memory, load the object from the secondary storage

2. Invoke the business method (deposit) on the implementation object

Copyright © 1Inferbata 2004 www.inferdata.com 57

InferData Limited |

Virtual Object Proxy

AccountClient <<interface>>
Account
void main (String[] args) >
{ float deposit(float amt)
AccountFactory factory;

factory = AccountFactory.getInstance ()
Account ac = factory.getAccount ("faiz");
float bal = ac.deposit(50);
System.out.println("The balance is "

+ bal);

AccountProxy > Accountimpl

Account target; Resource Manager
long fileOffset; ~°°7°° !
boolean inMemory;

String id;

_________ - float currentBal;
Object load(long offset);

float deposit(float amt)

{

currentBal += amt;
return currentBal;

}

float deposit (float amt)

{

float bal;

if (!inMemory) {
ResourceManager rm -=--
ResourceManager.getl

T e T

Secondary Storage

tance() ;

-——p--

target = =000 seeeccceea-- .
(Account)rm.load (fileOffset) ;
inMemory = true;

}
ba]-== targEﬂ:.depost:(amt); IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

return bal;

Copyright © Inferbata 2004 www.inferdata.com 58

InferData Limited I

Communication Proxy

¢ Problem:
» The caller and the implementation component may be in distinct processes
(and perhaps machines too)

¢ Reasons:
» Neither the client nor the component implementor should be responsible for
making and managing network connections
* Neither of them should be required to have the expertise in network and
socket level programming

¢ Description:
« The proxy contains the attributes for:
- The name of the host containing the server-side component
- The port on the server where the server process is listening for

connections
- An object id, that uniquely denotes the server-side component instance

Copyright © 1Inferbata 2004 www.inferdata.com 59

InferData Limited |

Communication Proxy (Contd.)

¢ Router

* On the server, we also have another object called the Router
The router is responsible for:
Receiving messsage requests from remote clients

Parsing the message requests
Invoking the method, specified in the message, on the target component
Collecting the return value and converting it to a network response

a K~ D=

Sending the response back to the remote caller

¢ In the proxy, perform the following steps in the business method (deposit)
1. Using the host name and the port, estabilish a network connection with the
server (the router)

2. Construct a network message indicating the target object, the operation to
be invoked and the parameters

3. Send the message request using the socket
Collect (read) the network response
5. Convert the response to the appropriate return type and return to caller

Copyright © Inferbata 2004 www.inferdata.com 60

InferData Limited |

Communication Proxy

AccountClient <<interface>>
Account
void main(String[] args) >
{ float deposit(float amt)
AccountFactory factory;

factory = AccountFactory.getInstance()
Account ac = factory.getAccount ("faiz") ;
float bal = ac.deposit(50) ;
System.out.println ("The balance is "

+ bal);

|
U
AccountProxy I Accountimpl

String host;

int port; I String id;

float currentBal;

int objectId;

float deposit (float amt)

{

float deposit (float amt)
{
float bal;
Socket socket = | XU e -]
new Socket (host, port);
String message =
"Soid=" + objectId +"," +
"op=deposit,argc=1," +
"arg type=float,arg=" +amt+"$";

currentBal += amt;
return currentBal;

Router

}

socket.send (message) ;
byte[] ret val = socket.read(); YA E

bal = convertToFloat (ret val);
return bal;

Copyright © 1Inferbata 2004 www.inferdata.com 61

InferData Limited |

Enterprise JavaBeans Workflow

In the section, using a simple example, we shall take a conceptual look at the
following:

Development of EJB components
Application assembly

Deployment code generation
Deployment of the EJB application

Copyright © Inferbata 2004 www.inferdata.com 62

InferData Limited I

Description of the Example

¢ We shall create a component that represents a customer’s bank account

It shall have one operation, called deposit, to perform deposits

- It takes in one parameter, of type float, representing the amount to be
deposited

- It returns the current balance which is also of type float

« It shall have a pair of attributes
- Customer name
- Current balance

¢ What kind of EJB should this be?
* Session?
« Entity?
 Message-Driven Bean?

¢ What should its distribution property be?

* Remote?
e Local?

Copyright © 1Inferbata 2004 www.inferdata.com 63

InferData Limited |

EJB Development Process (Step 1)

<<interface>> <<interface>> <<interface>>
EJBObject EJBHome EntityBean

¢ We shall model the customer account component as a remote entity bean
« Ideally it should be a local entity bean

¢ EJBObject (javax.ejb.EJBObject)

» This interface is the general specification of a proxy
» All remote EJB component interfaces must extend this interface

¢ EJBHome (javax.ejb.EJBHome)

« This interface may be thought of as a general specification of a EJB factory
» All remote EJB factories (referred to as home objects) must extend it

¢ EntityBean (javax.ejb.EntityBean)
» This interface represents the contract between the EJB container and the
entity bean
« Contains a list of callback methods
» All entity bean implementation classes must implement this interface

Copyright © Inferbata 2004 www.inferdata.com 64

InferData Limited |

EJB Development Process (Step 2)

<<interface>> <<interface>> <<interface>>
EJBObject EJBHome EntityBean
X Y z
<<interface>> <<interface>> <<abstract>>
Account AccountHome AccountBean
float deposit(float amt); Account create(String name, float amt); abstract void setName(String n);
€. |/ other methods deleted for brevity abstract String getName();
| abstract void setBalance(float amt);
abstract float getBalance();

this.setName(name);
this.setBalance(amt);
L return null;

}

A\
| String ejbCreate(String name, float amt) {
I
L

float deposit(float amt) {
float bal = this.getBalance();
bal += amt;
this.setBalance(bal);
return bal;

}
/I Other methods deleted for brevity

Copyright © 1Inferbata 2004 www.inferdata.com 65

InferData Limited I

EJB Development Process (Step 2)

¢ The component interface, Account

« Extend the interface javax.ejb.EJBObject
« Specify the method, deposit

¢ The home interface, AccountHome

« Extend the interface javax.ejb.EJBHome

« Specify the factory method, create

» This interface also contains other factory methods called finder methods, but
we shall address those in a later section

¢ The abstract bean implementation class, AccountBean

« Implement the interface javax.ejb.EntityBean

» For each attribute, declare a pair of abstract get/set methods
- Name, Name, Balance, Balance

« Corresponding to the method, create, in the home interface implement the
initializer method ejbCreate
- This method should take the same parameters as the method create
- This method should initialize all the attributes that map to the database

* Implement the business method, deposit

« Other methods, that also need to be implemented, will be covered later

Copyright © Inferbata 2004 www.inferdata.com 66

InferData Limited |

EJB Development Process (Step 3)

¢ The component developer specifies the deployment descriptor information in a
document named ejb-jar.xml

» The standard deployment descriptor file

¢ For each EJB component, the information provided here includes:

* The type of the bean (Entity, Session, Message-Driven)
 The home interface (Local and/or Remote)

 The component interface (Local and/or Remote)

* The bean class implementation

& For entity beans, we specify:
* The primary key type
* The entity bean type (CMP or BMP)
» For container-managed persistent (CMP) entity beans, we also specify:
- The abstract persistent schema
- The fields (attributes) that map to database table columns

& For session beans, we specify the session bean type (stateless or stateful)

¢ For MDB, we specify the destination type (Topic or Queue)

Copyright © 1Inferbata 2004 www.inferdata.com 67

InferData Limited |

EJB Development Process (Step 3)

1 <?xml version="1.0" encoding="UTF-8"7?>

2 <!DOCTYPE ejb-jar PUBLIC

3 "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"
4 "http://java.sun.com/dtd/ejb-jar 2 0.dtd">

5 <ejb-jar id="ejb-jar ID">

6 <display-name>MyFirstEJBApp</display-name>

7 <enterprise-beans>

8 <entity id="Account">

9 <ejb-name>MyAccount</ejb-name>

10 <home>com. idata.AccountHome</home>

11 <remote>com. idata.Account</remote>

12 <ejb-class>com.idata.AccountBean</ejb-class>

13 <persistence-type>Container</persistence-type>

14 <prim-key-class>java.lang.String</prim-key-class>

15 <reentrant>False</reentrant>

16 <cmp-versions>2.x</cmp-versions

17 <abstract-schema-name>Account</abstract-schema-name>
18 <cmp-field> <field-name>name</field-name> </cmp-field>
19 <cmp-field> <field-name>balance</field-name> </cmp-£field>
20 <primkey-field>name</primkey-field>

21 </entity>

22 </enterprise-beans>

23 </ejb-jar>

Copyright © Inferbata 2004 www.inferdata.com 68

InferData Limited |

EJB Development Process (Step 3)

Component JAR File

‘AccountHome.cIass ‘ ejb-jar.xml

<enterprise-beans>

‘AccountBean.class ‘

countz,

33
34 <
abstract -schema-n:
Account.class -
[name> </cmp-field>

¢ The component developer compiles the Java files

* AccountHome. java

« Account.java

* AccountBean.java

* Any miscellenous helper files

¢ The component developer packages these compiled class files along with the
deployment descriptor (ejb-jar.xml) in to a Component JAR file

¢ This Component JAR file is given to the Application Assembler

Copyright © 1Inferbata 2004 www.inferdata.com 69

InferData Limited |

EJB Application Assembly Process

Application JAR File Component JAR File

AccountHome.class ejb-jarxml

40 <enterprise-beans>
41 <entity id="Account"s

‘ Account Component

42 <ejb-name>MyAccount </ejb-name>
43 <home>com. idata . AccountHome</home>
44 <remote>com. idata.Account</remote>

‘AccountBean.cIass R

&

<persistence-type>Container</
persistence-type>
47 <prim-key-class>java.lang.String</

Customer Component

prim-key-class>
18 <reentrant>False</reentrant>
a9 <cmp-versions2.x</cmp-version>

50 <abstract-schema-name>Account</
abstract -schema-name>

ACCO u nt C I aSS s1 <cup-field> <field-namesname</field-
. name> </cmp-field>

Component JAR File

ejb-jar.xml
T CustomerHome.class ejb-jar.xml

41 <entity id="Account"s
42 <ejb-name>MyAccount</ejb-name>
43 idata
44 <remote>com. idata.Account</remote> & <e"te‘p”s?'bea"sj .
45 <ejb-class>com. idata.AccountBean</ “ CHiEiEy HREEEmETy

. a2 <ejb-name>MyAccount </ejb-name>
ejb-class>

43 <home>com. idata.AccountHome</home>

<persistence-type>Container</ >
44 <remote>com.idata.Account</remote>

persistence-type>
] 45 <ejb-class>com. idata.AccountBeanc/
47 <prim-key-class>java.lang.String</
' ejb-class>
46

prim-key-class> . q
<persistence-type>Containerc</

48 <reentrant>False</reentrant> .
49 <cmp-version>2.x</cmp-versions persistence-type> N 5 X N
50 <abstract-schema-name>Account</ 47 <prim-key-class>java.lang.String</
abstract-schema-name> prim-key-class>
51 <cmp-field> <field-name>name</field- 48 <1eentlanr:>False</zeentzant>
name> </cmp-field> 49 <cmp-version>2.x</cmp-version>

50 <abstract -schema-name>Account</

abstract-schema-name>

51 <cmp-field> <field-name>name</field-
u ,

Copyright © Inferbata 2004 www.inferdata.com 70

InferData Limited |

EJB Application Assembly Process

¢ The application assembler collects the Component JAR files from potentially
multiple component developers

¢ For an EJB application, the assembler creates

« Asingle JAR file, called the Application (EJB Application) JAR file, that defines
the application

* The contents of all the relevant Component JAR file are copied into the
Application JAR file

« A deployment descriptor file, eJjb-jar.xml, is created for the Application
JAR file
- The contents of the ejb-jar.xml files from the Component JAR files are

copied into the ejb-jar.xml in the Application JAR file

* The application assembler also needs to define the following:
- Transaction attributes
- Security roles and privileges
- Linking of EJBs and resolving references

¢ Since we have only a single component in our example, we do not have any
application assembly to perform

* In our special case, the Component JAR file is the Application JAR file

Copyright © 1Inferbata 2004 www.inferdata.com 71

InferData Limited |

EJB Application Deployment Process

¢ The EJB application deployer collects the EJB Application JAR file from the EJB
application assembler

¢ The deployer, using EJB container-specific tools, creates another EJB container-
specific deployment descriptor and stores it in the EJB Application JAR file which
Is now referred to as the Deployable JAR file

¢ The vendor-specific deployment descriptor is used to define the following
mappings:
« Entity beans abstract schema to tables or relations in the database
« CMP fields in the entity beans to columns in the database tables
» References to resources (DataSources, Message Queues and Topics) in the
Application JAR to real resource objects
- The administrator should have already created and configured these
resource objects
« Security role names to actual security groups or users in the operating
environment
- The administrator should have already created and configured the users
and groups

Copyright © Inferbata 2004 www.inferdata.com 72

InferData Limited |

EJB Application Deployment Process

¢ In the vendor-specifc deployment descriptor, the deployer defines the names to

be used to register the EJB Home objects in a JNDI-based naming server

« These names are referred to JINDI names

» For our example application containing the sole component, Account, let us
say the deployer chooses CitiBank as the name of the Account bean’s Home
object

« The administrator should have already created and configured the JNDI-
based naming service

Application JAR File Deployable JAR File
Account Component Account Component
ejb-jar.xml ejb-jarxml <Vendor=>.xml

Copyright © 1Inferbata 2004 www.inferdata.com 73

InferData Limited |

EJB Application Deployment Process
Deployable JAR File

Vendor supplied

— deployment

Account Component code generation
AccountHome I
Deployed JAR File
IAccountBean
Account Component
Account I
Account I
ejp-jarxmi IAccountHome
IAccountBean —
ejb-jar.xml

AccountHomeServer P -

AccountHomeClientProxy L

AccountServerProxy

AccountClientProxy I

ConcreteAccountBean

Copyright © Inferbata 2004 www.inferdata.com 74

InferData Limited I

EJB Application Deployment Process

¢ The deployer, using a EJB container-specific deployment tool and the
Deployable JAR file as input, generates another JAR file called the Deployed JAR
file

¢ The Deployed JAR file contains the deployment-specific container classes
¢ This JAR file is not portable

¢ This step is also referred to as EJB Compilation

¢ This JAR file is loaded on to the EJB application server

¢ Now the application is ready to be executed

Copyright © 1Inferbata 2004 www.inferdata.com 75

InferData Limited |

EJB Application Deployment Process

<<interface>> <<interface>> <<interface>>
EJBObject EJBHome EntityBean
X Y T Z T
<<interface>> <<interface>> <<abstract>>
Account AccountHome AccountBean
float deposit(float amt) Account create(String name, float amt); abstract void setName(String n);
(I /I Other methods deleted for brevity abstract String getName();
abstract void setBalance(float amt);
| bstract void setBal (float amt)
abstract float getBalance();
/\ | AN ~
| L — —] String ejbCreate(String name, float amt) {
this.setName(name);
l this.setBalance(amt);
| return null;
| }
|- = T————————— float deposit(float amt) {
float bal = this.getBalance();
bal += amt;
this.setBalance(bal);
return bal;
}
/I Other methods deleted for brevity
A B c D E T
Account Account Account Home Account ConcreteAccountBean
Client Server Client Home
Proxy Proxy Proxy Server

Copyright © Inferbata 2004 www.inferdata.com 76

Limited |
How do Enterprise JavaBeans Work?

In this section, we shall take a look at the following

« EJB Application deployment

« EJB container internals

* Interaction between the EJB component and the EJB Container
* Interactions between the client and the EJB container

Copyright © 1Inferbata 2004 www.inferdata.com 77

InferData Limited |

EJB Execution

Name Object .
- EJB Container

EJB Client

¢ Before the application is deployed, we have three processes
« The EJB container
- Running within an application server (not shown)
« The naming service
- Initially empty
* The client process

Copyright © Inferbata 2004 www.inferdata.com 78

InferData Limited |

EJB Execution

Name Object

EJB Container

CitiBank @ —————— |
(3]

EJB Client @@
f::a

Router @

A router object is instantiated in the EJB container (or server)
The AccountHomeServer object is instantiated in the EJB container

The AccountHomeServer object is regsitered (JNDI bound) in the naming
service using the name specified by the deployer

Copyright © Inferbata 2004 www.inferdata.com

race IR

InferData Limited |

EJB Execution

Name Object . __EJB Container
CitiBank @ = |
EJB Client
D
fffff ! =
Iookup("éitiBank“)

Account
Home

Y

Router®

4. Using the JNDI API, the client connects to the naming service and performs
a lookup using the JNDI name of the home object ()

- It receives an object of type AccountHomeClientProxy and the client
narrows (casts) it to the type AccountHome

- This object is a proxy to the server-side home object

- What kind of proxy is AccountHomeClientProxy ?

Copyright © Inferbata 2004 www.inferdata.com 80

InferData Limited

EJB Execution

EJB Client

lookup("CitiBank")

Account
Home

Y

>

EJB Container

@

®

create("Faiz", 100)

Name Object
CitiBank @ *******
-

5. The client invokes the factory method on the client proxy

- create("Faiz", 100)
6. The client proxy sends a network message, containing the method
Invocation request, to the router on the server/container

7. The router, receives the request, parses it and dispatches the call,

create("Faiz", 100), to the server-side home object, AccountHomeServer

Copyright © 1Inferbata 2004

www . inferdata.com

Cace IR

InferData Limited |

EJB Execution
Name Object
CitiBank @ @

EJB Container

EJB Client
e
Iookup("(;itiBank") @

C
Account GD
’ Home & @ !
| Y) b 0T @ | [
Gl . gl
create("Fa;iz", 100)

@ EntityContext
I ConcreteAccountBean I

()

Database

Copyright © Inferbata 2004 www.inferdata.com 82

InferData Limited |

EJB Execution

¢ The mechanically generated method, create(String n, float amount),
on the server-side object, AccountHomeServer performs the following
operations:

8. Instantiates the concrete implementation of the EJB class,
concreteAccountBean

9. Instantiates a container object of type javax.ejb.EntityContext

- This context object may be used by the bean to access container services
such as transactions and security
10. Assigns the context object to the concrete bean using the method
setEntityContext(javax.ejb.EntityContext) on the bean

- This method must be implemented on the abstract class AccountBean
11. Invokes the method ejbCreate("Faiz", 100) on the concrete bean

12. Reads the contents of the concrete bean and performs a database insert

Copyright © 1Inferbata 2004 www.inferdata.com 83

InferData Limited |

EJB Execution

Name Object
CitiBank @ @

EJB Container

EJB Client o)
@
I 77/@\‘

lookup("CitiBank") @

o ©
»> Account |

i H<>Yme 7777777 | @- IR
1 ——— > § - PK

create("Faiz", 100) ,,,, ; ‘ @
_r_r_rv_<> @ EntityContext
I ConcreteAccountBean I

fffffffffffff O

Account
Server
Proxy

Dat: base
(12)
&
Copyright © Inferbata 2004 www.inferdata.com

[ace I

InferData Limited |

EJB Execution

13. Instantiates the primary key object and assigns it to the entity context object

14. Instantiates the class AccountServerProxy and connects that object to
the concrete bean and the entity context

15. Invokes the method ejbPostCreate("Faiz", 100) on the concrete
bean

16. Returns the object of type AccountServerProxy

Copyright © 1Inferbata 2004 www.inferdata.com 85

InferData Limited '

EJB Execution

Name Object

CitiBank @

EJB Container

@

EJB Client

-
;
B
-)

e o ||

lookup("CitiBank") :

Accountf N |||
Home

Y >
=
o
['4

& L — :

create("Faiz", 100)

PK

_<> @ EntityContext
I ConcreteAccountBean I

A

- deposit(20)

Account | Account
Client 20
L Proxy @

e
() | (&) ®

0
2

Account
Server
Proxy

G
Database U

Copyright © Inferbata 2004 www.inferdata.com

[ace I

InferData Limited |

EJB Execution

17. The router, which had invoked the method create("Faiz", 100) on the
object of type AccountHomeServer, receives an object of type
AccountServerProxy

18. Corresponding to an instance of the class AccountServerProxy, the
router constructs an object of type AccountClientProxy, serializes it and
sends it back as a response to the client

- This is the return value for the client invoked method, create("Faiz",
100), in step 5
19. Since this object, AccountClientProxy, implements the interface
Account, the client can now invoke the business method, deposit (20),
on this remote reference

20. The AccountClientProxy constructs and sends a request message on
the network to the router

Copyright © 1Inferbata 2004 www.inferdata.com 87

InferData Limited '

EJB Execution

Name Object

EJB Container
CitiBank @ @

EJB Client

lookup("CitiBank") @
C

® ®
» Account
| Home

PK
create("Faiz", 100)

- deposit(20) 69 % E J>

@ ! _fvv_f_o @ EntityContext
} Account | Account 29 | @
””” > Client 1
P |

S S § Y - ConcreteAccountBean
) [l 1 = e B ey
v
120

Proxy

S
Account
Server

%

Database

Copyright © Inferbata 2004

www.inferdata.com

ace KK

InferData Limited |

21.

22.

23.

24.

25.

206.

EJB Execution

The router receives the message, parses it and dispatches (i.e. invokes the
method deposit(20)) it to the corresponding AccountServerProxy
object

The AccountServerProxy dispatches (i.e. invokes the method
deposit(20)) it to the concrete bean

The component author implemented method, deposit(float amount)
is executed and a value (float with a value of 120) is returned

The AccountServerProxy passes the return value back to the router as a
return value of the method invoked in step 21.

The router constructs a network response message encapsulating the return
value (float with a value of 120) and sends it back to the
AccountClientProxy

The AccountClientProxy receives the network response, extracts the
return value, converts it to float and returns it to the caller who had
iInvoked this method in step 19

The client should receive a float of value 120

Copyright © 1Inferbata 2004 www.inferdata.com 89

InferData Limited |

Some Questions

¢ What kind of proxy is AccountHomeClientProxy?
¢ What kind of proxy is AccountClientProxy?

¢ What kind of proxy is AccountServerProxy?

Copyright © Inferbata 2004 www.inferdata.com 90

InferData Limited |

Overview of Java Message Service

Copyright © Inferbata 2004 www.inferdata.com

InferData Limited |

Enterprise Messaging System

¢ Enterprise messaging systems allow two or more applications to exchange
information in the form of messages

¢ A message is a self-contained package of business data and network routing
header information.

¢ Applications exchange messages through virtual channels called destinations.
 When sending, a message is addressed to a destination, not a specific
application
« Any application that is interested in that destination may receive that
message
» This decouples the sender and receiver

¢ The entity that handles these virtual channels is called Message-Oriented
Middleware (MOM).

Copyright © Inferbata 2004 www.inferdata.com 92

InferData Limited |

Message-Oriented Middleware

¢ In MOM, messages are delivered asynchronously from one system to others.
« Sender is not required to wait for the message to be received or handled by

the recipient(s).

¢ Asynchronous messages are treated as autonomous units:

« Carries all the data and state needed by the business logic that processes it

¢ Applications use some messaging API to construct a message and then hand it

off to MOM for delivery to one or more recipients.

Application A

Messaging API

Application B

_>
messages

—

Copyright © 1Inferbata 2004

MOM

_>
messages

DUR——

Messaging API

www . inferdata.com

InferData Limited |

Messaging API

¢ All MOM vendors provide application developers an API for sending and
receiving messages
« Basic semantics of these APIs are the same
* Implementations may differ in network protocols, routing, adminiatration
facilities, etc.

¢ This similarity in APIs makes the Java Messaging Service (JMS) possible

¢ Different MOM vendors may support different functionalities
* Broadcasting a message to many destinations vs. sending to a single
destination
» Insurance of delivery ranges from best efforts to guaranteed

¢ Popular MOM products include:

 IBM MQSeries

* Progress SonicMQ

* Microsoft MSMQ

« Bea WebLogic Server

e Sun Java Message Queue
 OpenJMS (open source)

Copyright © Inferbata 2004 www.inferdata.com 94

InferData Limited |

Java Message Service (JMS)

¢ JMS is a vendor-independent messaging API
« Defines a common set of enterprise messaging concepts and facilities
* Not a union of existing vendor-specific APIs, nor an intersection of them
* Minimizes the set of concepts a Java programmer must learn to use MOM
products
« Maximizes the portability of messaging applications

¢ JMS is not a messaging system itself; it’s a set of interfaces and classes for
accessing messaging systems.

¢ If a MOM vendor provides an implementation of these interfaces and classes,
Java programmers can then use JMS API to access this vendor’'s messaging
system.

e This MOM product then becomes a JMS Provider.

Copyright © 1Inferbata 2004 www.inferdata.com 95

InferData Limited I

Benefits of Using JMS

¢ Reuse the same API to access many different messaging systems

)

My
MQSeries
code

MQSeries

z =z
n <
=
Q
(@]
S =
® =
w

Enterprise MSMQ * Java
Programmer \ == Enterprise
Programmer
My
SonicMQ
code

SonicMQ

* It is not expected that Microsoft will support JMS.

Copyright © Inferbata 2004 www.inferdata.com 96

InferData Limited |

JMS Messaging Styles

¢ JMS messaging is peer-to-peer
« All users of JIMS are referred to generically as JMS clients.
A JMS client that produces a message is called a producer.
A JMS client that receives a message is called a consumer.
A JMS client can be both a producer and a consumer.

¢ JMS offers two messaging styles (also called messaging domains):
* Point-to-point (PTP or P2P) queuing
- One-to-one delivery of messages; messages are inserted and removed
from a queue.
» Publish-and-subscribe (Pub/Sub)
- One-to-many broadcast of messages

Copyright © 1Inferbata 2004 www.inferdata.com 97

InferData Limited |

Point-To-Point
¢ One-to-one between producer and consumer
¢ Producers are referred to as Senders
¢ Consumers are referred to as Receivers

¢ The Destination is referred to as Queue

¢ Typically implemented by a queue
* Multiple senders can place messages in it
« Multiple receivers can consume messages from it
* Only one receiver gets to consume a message
- Once a message has been consumed by a receiver, it is no longer
available to other receivers

Potential
Receiver 1

\ Potential

Receiver 2

Sender |] Queue

Copyright © Inferbata 2004 www.inferdata.com 98

InferData Limited |

Publish-and-Subscribe

¢ One producer can send a message to many consumers
¢ Producer publishes (hence also called publishers) messages to a Topic
¢ Consumers subscribe (hence also called subscribers) to a Topic

¢ Any messages addressed to a topic are delivered to all the topic’s subscribers

Subscriber 1

Publisher | 5 Topic

Subscriber 2

Copyright © 1Inferbata 2004 www.inferdata.com 99

InferData Limited |

copyright © Inferbata 2004 www.inferdata.com 100

Limited |
Message-Driven Beans

copyright © Inferbata 2004 www . inferdata.com 101

InferData Limited |

Message-driven Beans

¢ A message-driven bean (MDB) is

* An asynchronous message consumer
« A MessageListener object on a JMS destination
* Invoked by the container as a result of the arrival of a JIMS message

¢ A message-driven bean has neither a home nor a remote interface
¢ A message-driven bean has no conversational state

¢ A message-driven bean is anonymous

copyright © Inferbata 2004 www.inferdata.com 102

Limited |
Association of MDB With JMS Destination

¢ Bean Provider uses message-driven-destination deployment descriptor element
to advise Deployer which JMS destination this MDB is to be associated with.

¢ An MDB is associated with a JMS Destination (qQueue or Topic) when the bean is
deployed.

www.inferdata.com 103

Copyright © 1Inferbata 2004

InferData Limited |

Client View of an MDB

¢ To aclient, an MDB is simply a JMS message consumer (MessageListener for a
JMS Destination).

¢ Client sends message to the JMS Destination.

¢ Clients locate a JMS Destination (for which an MDB is a listener) by using JNDI.

Context initialContext = new InitialContext();
Queue stockOrder = (javax.jms.Queue)initialContext.
Tookup(*java:com/env/jms/stockOrder”) ;

copyright © Inferbata 2004 www.inferdata.com 104

InferData Limited |

Client View of an MDB

¢ Client view of MDBs deployed in a container:

Message
Driven
Bean
Instances

copyright © Inferbata 2004 www . inferdata.com 105

InferData Limited |

Message-driven Bean Class

¢ All message-driven beans must implement the messagebprivensean and the

MessageListener interfaces:
package javax.ejb;
public interface MessageDrivenBean {
public void ejbRemove();
public void setMessageDrivenContext
(MessageDrivenContext c);

}

package javax.jms;

public interface MessagelListener {
public onMessage(Message msg) ;

}

¢ In addition, they must also implement an ejbcreate() method

copyright © Inferbata 2004 www.inferdata.com 106

InferData Limited I

onMessage() Method

¢ The onvessage() method is called by the bean’s container when a message has
arrived for the bean to service.

¢ The onvessage() method contains the logic that handles the processing of the
message

« Typically code to transform (adapt) types from the messaging domain to the
business domain

¢ The onvessage() method has a single argument, the incoming message

copyright © Inferbata 2004 www . inferdata.com 107

InferData Limited |

copyright © Inferbata 2004 www.inferdata.com 108

InferData Limited |

XML Overview

copyright © Inferbata 2004 www . inferdata.com 109

InferData Limited I

What Is XML?

¢ Extensible Markup Language (XML) is a markup language similar to HTML, but
XML allows you to make your own tags

¢ XML has many benefits over previous data formats.
« Itis flexible.
» It frees programmers from writing complex parsers.
« [t ties in nicely with Java technology.
« It describes the kind of data, not how to display it.

copyright © InferbData 2004 www.inferdata.com 110

Limited |
Basic Pieces of an XML Document

¢ Elements — Contain data or other elements.
& Attributes — Provide specific information about an element.

¢ Entities — Special characters that you use to avoid clashes with XML syntax.
» For example, '<’ is XML syntax, but you could use the entity: “<” (It stands
for less than.)

copyright © Inferbata 2004 www . inferdata.com 111

InferData Limited |

A Simple XML Example

Storing information about books in XML

4
1 <?xml version='1.0’ encoding='UTF-8'7?>

2 <!-- This is a comment in XML. (Just like HTML) -->
3 <book>

4 <title>Catcher in the Rye</title>

5 <author>JD Salinger</author>

6 <price unit="Dollars”>7.95</price>

7 </book>

8 <book> ... </book> is an element.

9 Unit is an attribute on the price element.

10 You can write an empty element two ways:

11 <foo></foo> or <foo/>.

copyright © InferData 2004 www.inferdata.com 112

Limited |
XML Syntax — Well-Formed XML

¢ Every tag must be closed.

¢ Tags must be nested properly.

« -The following is incorrect:

<book>

<title>

</book>

</title>

» -The following is correct:
<book>

<title>

</title>

</book>

copyright © Inferbata 2004 www . inferdata.com 113

InferData Limited |

XML Syntax — Valid XML

¢ Valid XML:

 Is well formed
e |s more strict than well formed XML

« Contains a Document Type Definition (DTD) that explains the grammar that
should be followed in the document

¢ Given a DTD, you can verify if an XML document is grammatically correct.

copyright © InferData 2004 www.inferdata.com 114

InferData Limited I

DTD

¢ A DTD for the book example:

<?xml version="1.0"7>

<!DOCTYPE book [

<!ELEMENT book (title, author, price)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (#PCDATA)>

<! ELEMENT pr"i ce (#PCDATA)>

<!ATTLIST price unit (dollars|pounds) "dollars">

1>

¢ This DTD says that:

* A book must contain three elements: title, author, and price.
 The ATTLIST line describes the unit attribute on price. Valid values for unit are
“dollars” and “pounds”; the default is “dollars.”

¢ Given an XML document and a DTD, a validating parser can check the syntax to
verify the right tags are in the right place and that they contain the right type of
data.

copyright © Inferbata 2004 www . inferdata.com 115

InferData Limited I

XML Parsers

¢ XML parsers do two major tasks:

» Parse the document to check for correctness.
* Provide a way for a programmer to access the data in the document.

¢ You must choose between two kinds of XML parsers: validating and non-
validating.
« A validating parser can parse valid XML documents.
* A non-validating parser can parse well formed XML documents.

¢ Next, you must choose between a tree-based parser and an event-driven one

copyright © InferbData 2004 www.inferdata.com 116

InferData Limited |

Overview of Web Services Concepts

This section provides overview of some fundamental concepts in Web services:

*

*

*

What are Web services
Web service architecture
SOAP

WSDL

UDDI

copyright © Inferbata 2004 www . inferdata.com 117

InferData Limited I

What are Web Services

¢ A Web service is a set of related application functions that can be
programmatically invoked over the Internet

¢ Applications can mix and match Web services to perform complex tasks with
minimal programming
« Example: An application can use airline reservation service, credit check
service, etc. to package into a complete travel service

copyright © InferbData 2004 www.inferdata.com 118

InferData Limited |

Categories of Web services

¢ Business information
 Use Web serivices to share information with customers or other businesses
« Example: stock quotes, news, etc.

¢ Business integration
» Use Web services to provide "for fee" services to its customers
« Example: credit checks, reservation systems, etc.

¢ Business process externalization

» Use Web services to dynamically integrate business processes
« Example: associate different companies to combine manufacturing,
assembly, wholesale distribution, and retail sales of a particular product

copyright © Inferbata 2004 www . inferdata.com 119

InferData Limited |

Web Service Roles and Interactions

Service -
Broker

Publish Discover

Y Y

Service Request/Response Service
Provider Requestor

copyright © InferbData 2004 www.inferdata.com 120

InferData Limited |

Key technologies for web services

¢ SOAP (Simple Object Access Protocol) for communication
¢ WSDL (Web Services Description Language) for description of services
¢ UDDI (Universal Description Discovery and Integration) for discovery

¢ XML as a general data format

copyright © Inferbata 2004 www . inferdata.com 121

InferData Limited I

SOAP

¢ SOAP is an XML-based standard for messaging over HTTP and other Internet
protocol

¢ SOAP enables interoperability between systems written in different technologies

¢ SOAP messages consist of three parts:
* An envelope that defines a framework for describing what is in a message
and how to process it.
» A set of encoding rules for expressing instances of application-defined data

types.
» A convention for representing remote procedure calls and responses.

copyright © InferData 2004 www.inferdata.com 122

InferData Limited I

WSDL

¢ WSDL is an XML document for describing :
« What a Web service can do - interface specification
 How to invoke it - binding specification
* Where it resides - service specification

¢ "What a Web service can do" is described abstractly through portTypes,
operations and messages:
» PortTypes correspond to Java interface or class
» QOperations correspond to methods
* Messages correspond to a single piece of information moving between the
invoker and the service. A method call involves two messages: request and
response.

¢ "How to invoke it" is described by bindings

 WSDL is protocol neutral
» Bindings bind the abstract portType descriptions to a particular protocol, such
as SOAP.

¢ "Where it resides" is described by services (a collection of ports)
» Essentially a URL that points to the service provider

copyright © Inferbata 2004 www . inferdata.com 123

InferData Limited |

UDDI

¢ UDDI registry stores

« Business information - information about the business that has published
Web services

« Service information - information about Web services

« Binding information - information for determining the entry point and
construction specifications for invoking Web services

 Metadata - information describing the specifications for services

¢ UDDI has two functions:
» Itis a SOAP-based protocol that defines how UDDI clients communicate with
registries
« Itis a particular set of globally replicated registries

copyright © InferData 2004 www.inferdata.com 124

Limited |
Web Service Roles and Technologies

service Broker

UDDI Registry

fWEDL LIRL raferences to
XML descriptors
of registerad Waeab Discover

1‘ WSDL | . ices il

Publish

$ wsbL

Y

' service Provider Service Requester

Web SOAP -
service HTTP -Request/Response i Client

Application Developer

= Saarch UDDI registries and import services
*Tast, deploy, and publizh Web services
- Creata Web services clients

www.inferdata.com 125

Copyright © 1Inferbata 2004

InferData Limited |

copyright © InferbData 2004 www.inferdata.com 126

